Plattenbauten: touching rectangles in space

dc.contributor.authorFelsner, Stefan
dc.contributor.authorKnauer, Kolja
dc.contributor.authorUeckerdt, Torsten
dc.date.accessioned2026-02-20T11:09:12Z
dc.date.available2026-02-20T11:09:12Z
dc.date.issued2025
dc.date.updated2026-02-20T11:09:12Z
dc.description.abstractPlanar bipartite graphs can be represented as touching graphs of horizontal and vertical segments in $\mathbb{R}^2$. We study a generalization in space: touching graphs of axis-aligned rectangles in $\mathbb{R}^3$, and prove that planar 3-colorable graphs can be represented this way. The result implies a characterization of corner polytopes previously obtained by Eppstein and Mumford. A by-product of our proof is a distributive lattice structure on the set of orthogonal surfaces with given skeleton. Further, we study representations by axis-aligned non-coplanar rectangles in $\mathbb{R}^3$ such that all regions are boxes. We show that the resulting graphs correspond to octahedrations of an octahedron. This generalizes the correspondence between planar quadrangulations and families of horizontal and vertical segments in $\mathbb{R}^2$ with the property that all regions are rectangles.
dc.format.extent31 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec765961
dc.identifier.issn0895-4801
dc.identifier.urihttps://hdl.handle.net/2445/227128
dc.language.isoeng
dc.publisherSociety for Industrial and Applied Mathematics.
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1137/23M160116X
dc.relation.ispartofSIAM Journal on Discrete Mathematics, 2025, vol. 39, num.2
dc.relation.urihttps://doi.org/10.1137/23M160116X
dc.rights(c) Society for Industrial and Applied Mathematics., 2025
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.subject.classificationTeoria de grafs
dc.subject.classificationMatemàtica discreta
dc.subject.otherGraph theory
dc.subject.otherDiscrete mathematics
dc.titlePlattenbauten: touching rectangles in space
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
919394.pdf
Mida:
537.83 KB
Format:
Adobe Portable Document Format