Apatite mineralization process from silicocarnotite bioceramics: mechanism of crystal growth and maturation

dc.contributor.authorRincón-López, July Andrea
dc.contributor.authorHermann-Muñoz, Jennifer Andrea
dc.contributor.authorCinca i Luis, Núria
dc.contributor.authorLópez Conesa, Lluís
dc.contributor.authorFernández-Benavides, David Andrés
dc.contributor.authorGarcía Cano, Irene
dc.contributor.authorGuilemany, J. M. (José María)
dc.contributor.authorBoccaccini, Aldo Roberto
dc.contributor.authorMuñoz-Saldaña, Juan
dc.contributor.authorAlvarado-Orozco, Juan Manuel
dc.date.accessioned2021-02-19T10:59:55Z
dc.date.available2021-05-21T05:10:26Z
dc.date.issued2020-05-21
dc.date.updated2021-02-19T10:59:55Z
dc.description.abstractA mechanism for the formation and crystallization processes of bone-like apatite grown on non-stoichiometric silicocarnotite (SC) is here proposed. Single-phase SC powders and ceramics were obtained from fixed mixtures of hydroxyapatite and bioactive glass 45S5. The bioactive behavior of SC was assessed by immersion in Hank´s solution at different times. Afterward, a systematic theoretical-experimental study of the structural properties at the micro and nanoscale using TEM was performed and correlated with SEM, EDX, XRD, and Raman techniques to determine the apatite mineralization process from the SC phase. The initial stage of apatite formation from SC was identified as the hydration and further polymerization of silanol groups, resulting in a silica-based hydrogel, which plays a critical role in the ionic exchange. As a result of the adsorption of ionic species from the medium into the silica-based hydrogel, the precipitation of crystalline apatitic structures starts through the emergence of newly formed SC nanocrystals, which act as a template for the crystallization process of a substituted apatite with SC-like structure. Then, due to the polymorphism between SC and HAp structures, the apatite layer retains the SC periodic arrangement following an epitaxial-like growth mechanism. Identification of the apatite layer formation mechanism is critical to understand its physical and chemical properties, which controls the long-term dissolution/precipitation rate of bioactive materials and their performance in the biological environment.
dc.format.extent16 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec703237
dc.identifier.issn1528-7483
dc.identifier.urihttps://hdl.handle.net/2445/174081
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1021/acs.cgd.0c00322
dc.relation.ispartofCrystal Growth & Design, 2020, vol. 20, num. 6, p. 4030-4045
dc.relation.urihttps://doi.org/10.1021/acs.cgd.0c00322
dc.rights(c) American Chemical Society , 2020
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Ciència dels Materials i Química Física)
dc.subject.classificationCristalls
dc.subject.classificationMicroscòpia electrònica de transmissió
dc.subject.otherCrystals
dc.subject.otherTransmission electron microscopy
dc.titleApatite mineralization process from silicocarnotite bioceramics: mechanism of crystal growth and maturation
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
703237.pdf
Mida:
11.67 MB
Format:
Adobe Portable Document Format