Covid-like epidemic spreading on networks

dc.contributor.advisorBoguñá, Marián
dc.contributor.authorPérez Pérez, Arnau
dc.date.accessioned2023-09-06T14:45:22Z
dc.date.available2023-09-06T14:45:22Z
dc.date.issued2023-06
dc.descriptionTreballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2023, Tutor: Marián Boguná Espinalca
dc.description.abstractThe COVID-19 pandemic has had significant impacts on health, economies, and societies. Mathematical models in networks play a crucial role in understanding and mitigating the spread of infectious diseases. This study develops a customized SIR model to simulate the spread of COVID-19, incorporating non-pharmaceutical interventions (NPIs) to limit transmission. Self-protection and mobility restrictions are complementary, allowing hygiene measures to serve as an alternative to strict mobility limitations. Gillespie algorithm is used to simulate infection and recovery events. To combat the late response in the first wave of infection in Spain, the study explores different lockdown strategies, including Intense and Multi-phase approaches. Intense lockdowns effectively reduce cases, but may be challenging to sustain due to population fatigue with prolonged restrictions. On the other hand, Multi-phase lockdowns have limited impact on final case numbers but aid in the recovery of the health system between waves, minimizing the impact on the economy, fatalities and people’s mental health.ca
dc.format.extent5 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/201756
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Pérez, 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Física
dc.subject.classificationCOVID-19cat
dc.subject.classificationModels matemàticscat
dc.subject.classificationTreballs de fi de graucat
dc.subject.otherCOVID-19eng
dc.subject.otherMathematical modelseng
dc.subject.otherBachelor's theseseng
dc.titleCovid-like epidemic spreading on networkseng
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
PÉREZ PÉREZ ARNAU_7934072.pdf
Mida:
837.84 KB
Format:
Adobe Portable Document Format
Descripció: