Computing Bonus-Malus premiums under partial prior information

dc.contributor.authorGómez Déniz, Emilio
dc.contributor.authorBermúdez, Lluís
dc.contributor.authorMorillo, Isabel
dc.date.accessioned2024-06-19T08:41:12Z
dc.date.available2024-06-19T08:41:12Z
dc.date.issued2005-06-01
dc.date.updated2024-06-19T08:41:17Z
dc.description.abstractThe use of classical bonus–malus systems entails very high maluses and other problems which, during recent years, have been criticised by actuaries. To avoid these problems, new bonus–malus models have been developed. For instance, it is well known that the use of an exponential loss function reduces the differences between overcharges and undercharges, solving the problem of high maluses. In order to measure the sensitivity of the exponential bonus–malus system, and according to robust Bayesian analysis, we first model the structure function by specifying a subclass of the generalised moments class. We then examine the range of relativities for each prior. Finally, we illustrate our method with a numerical example based on real data.
dc.format.extent14 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec524507
dc.identifier.issn1357-3217
dc.identifier.urihttps://hdl.handle.net/2445/213403
dc.language.isoeng
dc.publisherCambridge University Press (CUP)
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1017/S1357321700003111
dc.relation.ispartofBritish Actuarial Journal, 2005, vol. 11, num.2, p. 361-374
dc.relation.urihttps://doi.org/10.1017/S1357321700003111
dc.rights(c) Institute and Faculty of Actuaries 2015, 2005
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtica Econòmica, Financera i Actuarial)
dc.subject.classificationVariables (Matemàtica)
dc.subject.classificationEstadística bayesiana
dc.subject.otherVariables (Mathematics)
dc.subject.otherBayesian statistical decision
dc.titleComputing Bonus-Malus premiums under partial prior information
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
90707.pdf
Mida:
148.14 KB
Format:
Adobe Portable Document Format