The Boundary Harnack Principle for Nonlocal Elliptic Operators in Non-divergence Form

dc.contributor.authorRos, Xavier
dc.contributor.authorSerra Montolí, Joaquim
dc.date.accessioned2023-02-23T13:48:23Z
dc.date.available2023-02-23T13:48:23Z
dc.date.issued2019-10
dc.date.updated2023-02-23T13:48:23Z
dc.description.abstractWe prove a boundary Harnack inequality for nonlocal elliptic operators $L$ in non-divergence form with bounded measurable coefficients. Namely, our main result establishes that if $L u_1=$ $L u_2=0$ in $\Omega \cap B_1, u_1=u_2=0$ in $B_1 \backslash \Omega$, and $u_1, u_2 \geq 0$ in $\mathbb{R}^n$, then $u_1$ and $u_2$ are comparable in $B_{1 / 2}$. The result applies to arbitrary open sets $\Omega$. When $\Omega$ is Lipschitz, we show that the quotient $u_1 / u_2$ is Hölder continuous up to the boundary in $B_{1 / 2}$. These results will be used in forthcoming works on obstacle-type problems for nonlocal operators.
dc.format.extent17 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec708574
dc.identifier.issn0926-2601
dc.identifier.urihttps://hdl.handle.net/2445/194027
dc.language.isoeng
dc.publisherSpringer Verlag
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1007/s11118-018-9713-7
dc.relation.ispartofPotential Analysis, 2019, vol. 51, p. 315-331
dc.relation.urihttps://doi.org/10.1007/s11118-018-9713-7
dc.rights(c) Springer Verlag, 2019
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationTeoria d'operadors
dc.subject.classificationEquacions diferencials parcials estocàstiques
dc.subject.classificationProcessos estocàstics
dc.subject.classificationAnàlisi global (Matemàtica)
dc.subject.otherOperator theory
dc.subject.otherStochastic partial differential equations
dc.subject.otherStochastic processes
dc.subject.otherGlobal analysis (Mathematics)
dc.titleThe Boundary Harnack Principle for Nonlocal Elliptic Operators in Non-divergence Form
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
708574.pdf
Mida:
378.46 KB
Format:
Adobe Portable Document Format