Identification of negative keywords in search marketing with embedding layers and neural networks

dc.contributor.advisorVitrià i Marca, Jordi
dc.contributor.authorLoris, David
dc.date.accessioned2022-02-21T12:35:26Z
dc.date.available2022-02-21T12:35:26Z
dc.date.issued2021-01-18
dc.descriptionTreballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Any: 2021. Tutor: Jordi Vitrià i Marcaca
dc.description.abstract[en] In this paper we introduce a model to help marketing specialists within the field of Search Advertising to limit spend on Google searches which have a low probability of leading to a revenue generating event. This is a topic which has not been widely addressed in scientific literature. For this study, we obtained data from a company which spends a large amount on Google Ads, but relies on a subjective and time-consuming approach to this problem. Our proposed model uses GloVe’s pre-trained Embedding Layers and Neural Networks to speed up and improve accuracy of this process.ca
dc.format.extent39 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/183339
dc.language.isoengca
dc.rightscc-by-nc-nd (c) David Loris, 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceMàster Oficial - Fonaments de la Ciència de Dades
dc.subject.classificationPublicitat per Internet
dc.subject.classificationXarxes neuronals (Informàtica)
dc.subject.classificationCerca a Internet
dc.subject.classificationTreballs de fi de màster
dc.subject.otherInternet advertising
dc.subject.otherNeural networks (Computer science)
dc.subject.otherInternet searching
dc.subject.otherMaster's theses
dc.titleIdentification of negative keywords in search marketing with embedding layers and neural networksca
dc.typeinfo:eu-repo/semantics/masterThesisca

Fitxers

Paquet original

Mostrant 1 - 2 de 2
Carregant...
Miniatura
Nom:
tfm_david_loris.pdf
Mida:
1.06 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria
Carregant...
Miniatura
Nom:
README.md
Mida:
1.05 KB
Format:
Unknown data format
Descripció:
readme.md