Identification of negative keywords in search marketing with embedding layers and neural networks
| dc.contributor.advisor | Vitrià i Marca, Jordi | |
| dc.contributor.author | Loris, David | |
| dc.date.accessioned | 2022-02-21T12:35:26Z | |
| dc.date.available | 2022-02-21T12:35:26Z | |
| dc.date.issued | 2021-01-18 | |
| dc.description | Treballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Any: 2021. Tutor: Jordi Vitrià i Marca | ca |
| dc.description.abstract | [en] In this paper we introduce a model to help marketing specialists within the field of Search Advertising to limit spend on Google searches which have a low probability of leading to a revenue generating event. This is a topic which has not been widely addressed in scientific literature. For this study, we obtained data from a company which spends a large amount on Google Ads, but relies on a subjective and time-consuming approach to this problem. Our proposed model uses GloVe’s pre-trained Embedding Layers and Neural Networks to speed up and improve accuracy of this process. | ca |
| dc.format.extent | 39 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.uri | https://hdl.handle.net/2445/183339 | |
| dc.language.iso | eng | ca |
| dc.rights | cc-by-nc-nd (c) David Loris, 2021 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | ca |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
| dc.source | Màster Oficial - Fonaments de la Ciència de Dades | |
| dc.subject.classification | Publicitat per Internet | |
| dc.subject.classification | Xarxes neuronals (Informàtica) | |
| dc.subject.classification | Cerca a Internet | |
| dc.subject.classification | Treballs de fi de màster | |
| dc.subject.other | Internet advertising | |
| dc.subject.other | Neural networks (Computer science) | |
| dc.subject.other | Internet searching | |
| dc.subject.other | Master's theses | |
| dc.title | Identification of negative keywords in search marketing with embedding layers and neural networks | ca |
| dc.type | info:eu-repo/semantics/masterThesis | ca |
Fitxers
Paquet original
1 - 2 de 2
Carregant...
- Nom:
- tfm_david_loris.pdf
- Mida:
- 1.06 MB
- Format:
- Adobe Portable Document Format
- Descripció:
- Memòria