Electrochemical gating enhances nearfield trapping of single metalloprotein junctions

dc.contributor.authorAragonès, Albert C.
dc.contributor.authorDomke, Katrin F.
dc.date.accessioned2023-07-03T08:19:22Z
dc.date.available2023-07-03T08:19:22Z
dc.date.issued2021-06-08
dc.date.updated2023-07-03T08:19:22Z
dc.description.abstractMetalloprotein based junctions are widely used as model systems in the field of molecular bioelectronics to miniaturise electronic circuitry with help of biomolecular device components. To further progress in the field, new approaches are sought to form junctions with longer lifetimes than the current limit of hundreds of milliseconds, ideally approaching timescales sufficient for detailed junction characterization or even relevant for device operation. Here, we present an electrochemically gated plasmon-supported break-junction (EC-PBJ) platform that prolongs the lifetime of single-molecule junctions of Azurin (Azu) under strict electrochemical control and physiological conditions. EC-PBJ efficiently combines nearfield and electrochemical gating effects that stabilise the formed metalloprotein junction while maintaining the native structure of the biomolecule. For moderate far-field power densities of ca. 9.49 mW mu m(-2), the lifetime of individual oxidised Azu junctions is increased by a factor of 40 compared to laser-OFF conditions, which equals a nearfield trapping efficiency increase close to three orders of magnitude compared with reduced Azu junctions at the lowest used power density. We ascribe the lifetime tuning through EC-PBJ to two synergistic parameters: (i) the control of the redox state of trapped Azu that affects its resonant state and polarisability, and (ii) the steering of the localised surface plasmon resonance (LSPR) of the junction nanogap through electrode potential control. At the used laser mid-power range, the Azu redox state and polarisability have a more significant effect on the nearfield trapping efficiency than the LSPR shift. Non-invasively increased junction lifetimes pave the way for the development of improved biomolecular sensing and recognition platforms.
dc.format.extent9 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec724957
dc.identifier.issn2050-7526
dc.identifier.urihttps://hdl.handle.net/2445/200220
dc.language.isoeng
dc.publisherRoyal Society of Chemistry
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1039/d1tc01535d
dc.relation.ispartofJournal of Materials Chemistry C, 2021, vol. 9, num. 35, p. 11698-11706
dc.relation.urihttps://doi.org/10.1039/d1tc01535d
dc.rightscc-by (c) Aragonès, Albert C. et al., 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Ciència dels Materials i Química Física)
dc.subject.classificationElectroquímica
dc.subject.classificationMetal·loproteïnes
dc.subject.classificationRessonància de plasmons superficials
dc.subject.otherElectrochemistry
dc.subject.otherMetalloproteins
dc.subject.otherSurface plasmon resonance
dc.titleElectrochemical gating enhances nearfield trapping of single metalloprotein junctions
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
724957.pdf
Mida:
12.56 MB
Format:
Adobe Portable Document Format