Carregant...
Miniatura

Tipus de document

Objecte de conferència

Versió

Versió acceptada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/219971

Mitigating annotation shift in cancer classification using single image generative models

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Artificial Intelligence (AI) has emerged as a valuable tool for assisting radiologists in breast cancer detection and diagnosis. However, the success of AI applications in this domain is restricted by the quantity and quality of available data, posing challenges due to limited and costly data annotation procedures that often lead to annotation shifts. This study simulates, analyses and mitigates annotation shifts in cancer classification in the breast mammography domain. First, a high-accuracy cancer risk prediction model is developed, which effectively distinguishes benign from malignant lesions. Next, model performance is used to quantify the impact of annotation shift. We uncover a substantial impact of annotation shift on multiclass classification performance particularly for malignant lesions. We thus propose a training data augmentation approach based on single-image generative models for the affected class, requiring as few as four in-domain annotations to considerably mitigate annotation shift, while also addressing dataset imbalance. Lastly, we further increase performance by proposing and validating an ensemble architecture based on multiple models trained under different data augmentation regimes. Our study offers key insights into annotation shift in deep learning breast cancer classification and explores the potential of single-image generative models to overcome domain shift challenges. All code used for this study is made publicly available at https://github.com/MartaBuetas/EnhancingBreastCancerDiagnosis.

Citació

Citació

BUETAS ARCAS, Marta, OSUALA, Richard, LEKADIR, Karim, DÍAZ, Oliver. Mitigating annotation shift in cancer classification using single image generative models. _Comunicació a: Proc. SPIE 13174_. 17th International Workshop on Breast Imaging (IWBI 2024). Vol.  1317421 (29 May 2024). [consulta: 22 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/219971]

Exportar metadades

JSON - METS

Compartir registre