Carregant...
Fitxers
Tipus de document
ArticleVersió
Versió acceptadaData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/192988
The Calderón problem for nonlocal Schrödinger equations with homogeneous, directionally antilocal principal symbols
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
In this article we consider direct and inverse problems for $\alpha$-stable, elliptic nonlocal operators whose kernels are possibly only supported on cones and which satisfy the structural condition of directional antilocality as introduced by Y. Ishikawa in the 80s. We consider the Dirichlet problem for these operators on the respective "domain of dependence of the operator" and in several, adapted function spaces. This formulation allows one to avoid natural "gauges" which would else have to be considered in the study of the associated inverse problems. Exploiting the directional antilocality of these operators we complement the investigation of the direct problem with infinite data and single measurement uniqueness results for the associated inverse problems. Here, due to the only directional antilocality, new geometric conditions arise on the measurement domains. We discuss both the setting of symmetric and a particular class of non-symmetric nonlocal elliptic operators, and contrast the corresponding results for the direct and inverse problems. In particular for only "one-sided operators" new phenomena emerge both in the direct and inverse problems: For instance, it is possible to study the problem in data spaces involving local and nonlocal data, the unique continuation property may not hold in general and further restrictions on the measurement set for the inverse problem arise.
Matèries (anglès)
Citació
Citació
COVI, Giovanni, GARCÍA-FERRERO, María ángeles, RÜLAND, Angkana. The Calderón problem for nonlocal Schrödinger equations with homogeneous, directionally antilocal principal symbols. _Journal of Differential Equations_. 2022. Vol. 341, núm. 79-149. [consulta: 23 de gener de 2026]. ISSN: 0022-0396. [Disponible a: https://hdl.handle.net/2445/192988]