Dynamic changes in microvascular flow conductivity and perfusion after myocardial infarction shown by image-based modeling

dc.contributor.authorGkontra, Polyxeni
dc.contributor.authorEl‐Bouri, Wahbi K.
dc.contributor.authorNorton, Kerri‐Ann
dc.contributor.authorSantos, Andrés
dc.contributor.authorPopel, Aleksander S.
dc.contributor.authorPayne, Stephen J.
dc.contributor.authorGarcía Arroyo, Alicia
dc.date.accessioned2023-03-03T18:56:05Z
dc.date.available2023-03-03T18:56:05Z
dc.date.issued2019-03-22
dc.date.updated2023-03-03T18:56:05Z
dc.description.abstractBackground Microcirculation is a decisive factor in tissue reperfusion inadequacy following myocardial infarction (MI). Nonetheless, experimental assessment of blood flow in microcirculation remains a bottleneck. We sought to model blood flow properties in coronary microcirculation at different time points after MI and to compare them with healthy conditions to obtain insights into alterations in cardiac tissue perfusion. Methods and Results We developed an image‐based modeling framework that permitted feeding a continuum flow model with anatomical data previously obtained from the pig coronary microvasculature to calculate physiologically meaningful permeability tensors. The tensors encompassed the microvascular conductivity and were also used to estimate the arteriole-venule drop in pressure and myocardial blood flow. Our results indicate that the tensors increased in a bimodal pattern at infarcted areas on days 1 and 7 after MI while a nonphysiological decrease in arteriole-venule drop in pressure was observed; contrary, the tensors and the arteriole-venule drop in pressure on day 3 after MI, and in remote areas, were closer to values for healthy tissue. Myocardial blood flow calculated using the condition‐dependent arteriole-venule drop in pressure decreased in infarcted areas. Last, we simulated specific modes of vascular remodeling, such as vasodilation, vasoconstriction, or pruning, and quantified their distinct impact on microvascular conductivity. Conclusions Our study unravels time‐ and region‐dependent alterations of tissue perfusion related to the structural changes occurring in the coronary microvasculature due to MI. It also paves the way for conducting simulations in new therapeutic interventions in MI and for image‐based microvascular modeling by applying continuum flow models in other biomedical scenarios.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec731714
dc.identifier.issn2047-9980
dc.identifier.urihttps://hdl.handle.net/2445/194572
dc.language.isoeng
dc.publisherAmerican Heart Association
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1161/JAHA.118.011058
dc.relation.ispartofJournal of the American Heart Association, 2019, vol. 8, num. 7
dc.relation.urihttps://doi.org/10.1161/JAHA.118.011058
dc.rightscc-by-nc (c) Gkontra, Polyxeni et al., 2019
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationMicrocirculació
dc.subject.classificationInfart de miocardi
dc.subject.classificationSimulació per ordinador
dc.subject.classificationPerfusió (Fisiologia)
dc.subject.otherMicrocirculation
dc.subject.otherMyocardial infarction
dc.subject.otherComputer simulation
dc.subject.otherPerfusion (Physiology)
dc.titleDynamic changes in microvascular flow conductivity and perfusion after myocardial infarction shown by image-based modeling
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
731714.pdf
Mida:
3.29 MB
Format:
Adobe Portable Document Format