Magnetic and structural entropy contributions to the multicaloric effects in Ni-Mn-Ga-Cu

dc.contributor.authorGràcia-Condal, Adrià
dc.contributor.authorPlanes Vila, Antoni
dc.contributor.authorMañosa, Lluís
dc.contributor.authorWei, Zhiyang
dc.contributor.authorGuo, Jianping
dc.contributor.authorSoto-Parra, Daniel E.
dc.contributor.authorLiu, Jian
dc.date.accessioned2022-12-12T17:22:08Z
dc.date.available2022-12-12T17:22:08Z
dc.date.issued2022-08-23
dc.date.updated2022-12-12T17:22:08Z
dc.description.abstractWe have studied the multicaloric properties of a Ni-Mn-Ga-Cu alloy. In this alloy, application of magnetic field and uniaxial stress shift its martensitic transition towards higher temperatures which results in synergic magnetocaloric and elastocaloric effects. By a proper numerical treatment of the calorimetric curves obtained under applied magnetic field and uniaxial stress we have obtained the entropy S(T,μ0H,σ) as a function of the magnetic field, uniaxial stress, and temperature over the whole phase space under study. We have determined the different entropy contributions to the multicaloric effect in this alloy, and noticeably we have evidenced the role played by the interplay between magnetic and vibrational degrees of freedom. A comparison between single caloric and multicaloric effects shows that appropriate combinations of magnetic field and stress reduce the magnitude of the specific field required to obtain a given value of the isothermal entropy and adiabatic temperature changes. For example, at 299 K, to achieve an entropy change (ΔS) of −14 J kg−1K−1, a magnetic field of ∼2.5 T or a uniaxial stress of 19 MPa are required, while a combination of dual fields of (1 T, 12 MPa) yields to the same value of ΔS. Moreover, the maximum adiabatic temperature change is enlarged up to 9.4 K by the dual fields, higher than the value obtained by a single field (∼7 K). The advantage of multicaloric effect is particularly relevant at low magnetic fields which are achievable by permanent magnets. Our findings open new avenues for using multicaloric materials in novel refrigeration technologies.
dc.format.extent8 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec725143
dc.identifier.issn2475-9953
dc.identifier.urihttps://hdl.handle.net/2445/191525
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1103/PhysRevMaterials.6.084403
dc.relation.ispartofPhysical Review Materials, 2022, vol. 6, p. 1-8
dc.relation.urihttps://doi.org/10.1103/PhysRevMaterials.6.084403
dc.rights(c) American Physical Society, 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Física de la Matèria Condensada)
dc.subject.classificationCiència dels materials
dc.subject.classificationCamps magnètics
dc.subject.classificationPropietats magnètiques
dc.subject.otherMaterials science
dc.subject.otherMagnetic fields
dc.subject.otherMagnetic properties
dc.titleMagnetic and structural entropy contributions to the multicaloric effects in Ni-Mn-Ga-Cu
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
725143.pdf
Mida:
1.61 MB
Format:
Adobe Portable Document Format