Carregant...
Fitxers
Tipus de document
ArticleVersió
Versió publicadaData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/202122
Special values of triple-product -adic L-functions and non-crystalline diagonal classes
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
The main purpose of this note is to understand the arithmetic encoded in the special value of the $p$-adic $L$-function $E_p^g$ (f, $\left.\mathbf{g}, \mathbf{h}\right)$ associated to a triple of modular forms $(f, g, h)$ of weights $(2,1,1)$, in the case where the classical $L$-function $L(f \otimes g \otimes h, s)$ (which typically has sign +1$)$ does not vanish at its central critical point $s=1$. When $f$ corresponds to an elliptic curve $E / \mathbb{Q}$ and the classical $L$-function vanishes, the Elliptic Stark Conjecture of Darmon-Lauder-Rotger predicts that $E_p^g$ (f, $\left.\mathbf{g}, \mathbf{h}\right)(2,1,1)$ is either 0 (when the order of vanishing of the complex $L$-function is $>2$ ) or related to logarithms of global points on $E$ and a certain Gross-Stark unit associated to $g$ (when the order of vanishing is exactly 2). We complete the picture proposed by the Elliptic Stark Conjecture by providing a formula for the value $E_p^g(\mathbf{f}, \mathbf{g}, \mathbf{h})(2,1,1)$ in the case where $L(f \otimes g \otimes h, 1) \neq 0$.
Matèries
Matèries (anglès)
Citació
Citació
GATTI, Francesca, GUITART MORALES, Xavier, MASDEU SABATÉ, Marc, ROTGER, Victor. Special values of triple-product -adic L-functions and non-crystalline diagonal classes. _Journal de Théorie des Nombres de Bordeaux_. 2021. Vol. 33, núm. 809-834. [consulta: 21 de gener de 2026]. ISSN: 1246-7405. [Disponible a: https://hdl.handle.net/2445/202122]