Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Elsevier, 2018
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/128009

A discrete mixture regression for modeling the duration of non-hospitalization medical leave of motor accident victims

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Studies analyzing the temporary repercussions of motor vehicle accidents are scarcer than those analyzing permanent injuries or mortality. A regression model to evaluate the risk factors affecting the duration of temporary disability after injury in such an accident is constructed using a motor insurance dataset. The length of non-hospitalization medical leave, measured in days, following a motor accident is used here as a measure of the severity of temporary disability. The probability function of the number of days of sick leave presents spikes in multiples of five (working week), seven (calendar week) and thirty (month), etc. To account for this, a regression model based on finite mixtures of multiple discrete distributions is proposed to fit the data properly. The model provides a very good fit when the multiples for the working week, week, fortnight and month are taken into account. Victim characteristics of gender and age and accident characteristics of the road user type, vehicle class and the severity of permanent injuries were found to be significant when accounting for the duration of temporary disability.

Citació

Citació

BERMÚDEZ, Lluís, KARLIS, Dimitris, SANTOLINO, Miguel. A discrete mixture regression for modeling the duration of non-hospitalization medical leave of motor accident victims. _Accident Analysis and Prevention_. 2018. Vol. 121, núm. December, pàgs. 157-165. [consulta: 23 de gener de 2026]. ISSN: 0001-4575. [Disponible a: https://hdl.handle.net/2445/128009]

Exportar metadades

JSON - METS

Compartir registre