Assessing GW approaches for predicting core level binding energies

dc.contributor.authorvan Setten, Michiel J.
dc.contributor.authorCosta Sala, Ramon
dc.contributor.authorViñes Solana, Francesc
dc.contributor.authorIllas i Riera, Francesc
dc.date.accessioned2020-06-15T16:24:43Z
dc.date.available2020-06-15T16:24:43Z
dc.date.issued2018-01-10
dc.date.updated2020-06-15T16:24:43Z
dc.description.abstractHere we present a systematic study on the performance of different GW approaches: G(0)W(0), G(0)W(0) with linearized quasiparticle equation (lin-G(0)W(0)), and quasiparticle self-consistent GW (qsGW), in predicting core level binding energies (CLBEs) on a series of representative molecules comparing to Kohn-Sham (KS) orbital energy-based results. KS orbital energies obtained using the PBE functional are 20-30 eV lower in energy than experimental values obtained from X-ray photoemission spectroscopy (XPS), showing that any Koopmans-like interpretation of KS core level orbitals fails dramatically. Results from qsGW lead to CLBEs that are closer to experimental values from XPS, yet too large. For the qsGW method, the mean absolute error is about 2 eV, an order of magnitude better than plain KS PBE orbital energies and quite close to predictions from Delta SCF calculations with the same functional, which are accurate within similar to 1 eV. Smaller errors of similar to 0.6 eV are found for qsGW CLBE shifts, again similar to those obtained using Delta SCF PBE. The computationally more affordable G(0)W(0) approximation leads to results less accurate than qsGW, with an error of similar to 9 eV for CLBEs and similar to 0.9 eV for their shifts. Interestingly, starting G(0)W(0) from PBEO reduces this error to similar to 4 eV with a slight improvement on the shifts as well (similar to 0.4 eV). The validity of the G(0)W(0) results is however questionable since only linearized quasiparticle equation results can be obtained. The present results pave the way to estimate CLBEs in periodic systems where Delta SCF calculations are not straightforward although further improvement is clearly needed.
dc.format.extent7 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec680667
dc.identifier.issn1549-9618
dc.identifier.urihttps://hdl.handle.net/2445/165602
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1021/acs.jctc.7b01192
dc.relation.ispartofJournal of Chemical Theory and Computation, 2018, vol. 14, num. 2, p. 877-883
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/676580/EU//NoMaD
dc.relation.urihttps://doi.org/10.1021/acs.jctc.7b01192
dc.rights(c) American Chemical Society , 2018
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Ciència dels Materials i Química Física)
dc.subject.classificationQuasipartícules (Física)
dc.subject.classificationEnergia
dc.subject.classificationMolècules
dc.subject.classificationEspectroscòpia de raigs X
dc.subject.otherQuasiparticles (Physics)
dc.subject.otherEnergy
dc.subject.otherMolecules
dc.subject.otherX-ray spectroscopy
dc.titleAssessing GW approaches for predicting core level binding energies
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
680667.pdf
Mida:
670.92 KB
Format:
Adobe Portable Document Format