Magnetic fringe-field control of electronic transport in an organic film

dc.contributor.authorWang, Fujian
dc.contributor.authorMacià Bros, Ferran
dc.contributor.authorWohlgenannt, M.
dc.contributor.authorKent, A. D.
dc.contributor.authorFlatté, Michael E.
dc.date.accessioned2020-05-12T15:24:02Z
dc.date.available2020-05-12T15:24:02Z
dc.date.issued2012
dc.date.updated2020-05-12T15:24:03Z
dc.description.abstractRandom, spatially uncorrelated nuclear-hyperfine fields in organic materials dramatically affect electronic transport properties such as electrical conductivity, photoconductivity, and electroluminescence. The influence of these nuclear-hyperfine fields can be overwhelmed by a uniform externally applied magnetic field, even at room temperature where the thermodynamic influences of the resulting nuclear and electronic Zeeman splittings are negligible. As a result, even in applied magnetic fields as small as 10 mT, the kinetics of exciton formation, bipolaron formation, and single-carrier hopping are all modified at room temperature, leading to changes in transport properties in excess of 10% in many materials. Here, we demonstrate a new method of controlling the electrical conductivity of an organic film at room temperature, using the spatially varying magnetic fringe fields of a magnetically unsaturated ferromagnet. (The fringe field is the magnetic field emanating from a ferromagnet, associated with magnetic dipole interactions or, equivalently, the divergence of the magnetization within and at the surfaces of the ferromagnet.) The ferromagnet's fringe fields might act as a substitute for either the applied magnetic field or the inhomogeneous hyperfine field. The size of the effect, the magnetic-field dependence, and hysteretic properties rule out a model where the fringe fields from the ferromagnet provide a local magnetic field that changes the electronic transport properties through the hyperfine field, and show that our effects originate from electrical transport through the inhomogeneous fringe fields coming from the ferromagnet. Surprisingly, these inhomogeneous fringe fields vary over length scales roughly 2 orders of magnitude larger than the hopping length in the organic materials, challenging the fundamental models of magnetoresistance in organic layers which require the correlation length of the inhomogeneous field to correspond roughly to the hopping length.
dc.format.extent15 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec699911
dc.identifier.issn2160-3308
dc.identifier.urihttps://hdl.handle.net/2445/159772
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1103/PhysRevX.2.021013
dc.relation.ispartofPhysical Review X, 2012, vol. 2, p. 021013
dc.relation.urihttps://doi.org/10.1103/PhysRevX.2.021013
dc.rightscc-by (c) Wang, Fujian et al., 2012
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es
dc.sourceArticles publicats en revistes (Física de la Matèria Condensada)
dc.subject.classificationPel·lícules fines
dc.subject.classificationConductors orgànics
dc.subject.classificationFotoconductivitat
dc.subject.classificationDíodes electroluminescents
dc.subject.otherThin films
dc.subject.otherOrganic conductors
dc.subject.otherPhotoconductivity
dc.subject.otherLight emitting diodes
dc.titleMagnetic fringe-field control of electronic transport in an organic film
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
699911.pdf
Mida:
2.23 MB
Format:
Adobe Portable Document Format