Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c)  García, G. et al., 2025
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/226154

Univariate Linear Normal Models: Optimal Equivariant Estimation

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

In this paper, we establish the existence and uniqueness of the minimum intrinsic risk equivariant (MIRE) estimator for univariate linear normal models. The estimator is derived under the action of the subgroup of the affine group that preserves the column space of the design matrix, within the framework of intrinsic statistical analysis based on the squared Rao distance as the loss function. This approach provides a parametrization-free assessment of risk and bias, differing substantially from the classical quadratic loss, particularly in small-sample settings. The MIRE is compared with the maximum likelihood estimator (MLE) in terms of intrinsic risk and bias, and a simple approximate version (a-MIRE) is also proposed. Numerical evaluations show that the a-MIRE performs closely to the MIRE while significantly reducing the intrinsic bias and risk of the MLE for small samples. The proposed intrinsic methods could extend to other invariant frameworks and connect with recent developments in robust estimation procedures.

Citació

Citació

GARCÍA, Gloria, CUBEDO CULLERÉ, Marta, OLLER I SALA, Josep maria. Univariate Linear Normal Models: Optimal Equivariant Estimation. _Mathematics_. 2025. Vol. 13, núm. 22, pàgs. 1-19. [consulta: 6 de febrer de 2026]. [Disponible a: https://hdl.handle.net/2445/226154]

Exportar metadades

JSON - METS

Compartir registre