Tailoring the surface density of silicon nanocrystals embedded in SiOx single layers

dc.contributor.authorHernández Márquez, Sergi
dc.contributor.authorMiska, P.
dc.contributor.authorGrün, M.
dc.contributor.authorEstradé Albiol, Sònia
dc.contributor.authorPeiró Martínez, Francisca
dc.contributor.authorGarrido Fernández, Blas
dc.contributor.authorVergnat, M.
dc.contributor.authorPellegrino, Paolo
dc.date.accessioned2013-12-19T08:15:45Z
dc.date.available2013-12-19T08:15:45Z
dc.date.issued2013-10-25
dc.date.updated2013-12-19T08:15:46Z
dc.description.abstractIn this article, we explore the possibility of modifying the silicon nanocrystal areal density in SiOx single layers, while keeping constant their size. For this purpose, a set of SiOx monolayers with controlled thickness between two thick SiO2 layers has been fabricated, for four different compositions (x=1, 1.25, 1.5, or 1.75). The structural properties of the SiO x single layers have been analyzed by transmission electron microscopy (TEM) in planar view geometry. Energy-filtered TEM images revealed an almost constant Si-cluster size and a slight increase in the cluster areal density as the silicon content increases in the layers, while high resolution TEM images show that the size of the Si crystalline precipitates largely decreases as the SiO x stoichiometry approaches that of SiO2. The crystalline fraction was evaluated by combining the results from both techniques, finding a crystallinity reduction from 75% to 40%, for x = 1 and 1.75, respectively. Complementary photoluminescence measurements corroborate the precipitation of Si-nanocrystals with excellent emission properties for layers with the largest amount of excess silicon. The integrated emission from the nanoaggregates perfectly scales with their crystalline state, with no detectable emission for crystalline fractions below 40%. The combination of the structural and luminescence observations suggests that small Si precipitates are submitted to a higher compressive local stress applied by the SiO2 matrix that could inhibit the phase separation and, in turn, promotes the creation of nonradiative paths.
dc.format.extent7 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec630884
dc.identifier.issn0021-8979
dc.identifier.urihttps://hdl.handle.net/2445/48603
dc.language.isoeng
dc.publisherAmerican Institute of Physics
dc.relation.isformatofReproducció del document publicat a: http://dx.doi.org/10.1063/1.4847536
dc.relation.ispartofJournal of Applied Physics, 2013, vol. 114, p. 233101-1-233101-6
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/245977/EU//NASCENT
dc.relation.urihttp://dx.doi.org/10.1063/1.4847536
dc.rights(c) American Institute of Physics , 2013
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Enginyeria Electrònica i Biomèdica)
dc.subject.classificationSilici
dc.subject.classificationNanocristalls semiconductors
dc.subject.classificationCèl·lules solars
dc.subject.classificationFotònica
dc.subject.classificationMicroscòpia electrònica de transmissió
dc.subject.classificationLuminescència
dc.subject.classificationSemiconductors amorfs
dc.subject.classificationEstequiometria
dc.subject.otherSilicon
dc.subject.otherSemiconductor nanocrystals
dc.subject.otherSolar cells
dc.subject.otherPhotonics
dc.subject.otherTransmission electron microscopy
dc.subject.otherLuminescence
dc.subject.otherAmorphous semiconductors
dc.subject.otherStoichiometry
dc.titleTailoring the surface density of silicon nanocrystals embedded in SiOx single layers
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
630884.pdf
Mida:
955.97 KB
Format:
Adobe Portable Document Format