Enhanced photoelectrochemical behavior of H-TiO2 nanorods hydrogenated by controlled and local rapid thermal annealing

dc.contributor.authorWang, Xiaodan
dc.contributor.authorEstradé Albiol, Sònia
dc.contributor.authorLin, Yuanjing
dc.contributor.authorYu, Feng
dc.contributor.authorLópez Conesa, Lluís
dc.contributor.authorZhou, Hao
dc.contributor.authorGurram, Sanjeev Kumar
dc.contributor.authorPeiró Martínez, Francisca
dc.contributor.authorFan, Zhiyong
dc.contributor.authorShen, Hao
dc.contributor.authorSchaefer, Lothar
dc.contributor.authorBraeuer, Guenter
dc.contributor.authorWaag, Andreas
dc.date.accessioned2018-03-21T14:39:44Z
dc.date.available2018-03-21T14:39:44Z
dc.date.issued2017-05-05
dc.date.updated2018-03-21T14:39:44Z
dc.description.abstractRecently, colored H-doped TiO2 (H-TiO2) has demonstrated enhanced photoelectrochemical (PEC) performance due to its unique crystalline core disordered shell nanostructures and consequent enhanced conduction behaviors between the core-shell homo-interfaces. Although various hydrogenation approaches to obtain H-TiO2 have been developed, such as high temperature hydrogen furnace tube annealing, high pressure hydrogen annealing, hydrogen-plasma assisted reaction, aluminum reduction and electrochemical reduction etc., there is still a lack of a hydrogenation approach in a controlled manner where all processing parameters (temperature, time and hydrogen flux) were precisely controlled in order to improve the PEC performance of H-TiO2 and understand the physical insight of enhanced PEC performance. Here, we report for the first time a controlled and local rapid thermal annealing (RTA) approach to prepare hydrogenated core-shell H-TiO2 nanorods grown on F:SnO2 (FTO) substrate in order to address the degradation issue of FTO in the typical TiO2 nanorods/FTO system observed in the conventional non-RTA treated approaches. Without the FTO degradation in the RTA approach, we systematically studied the intrinsic relationship between the annealing temperature, structural, optical, and photoelectrochemical properties in order to understand the role of the disordered shell on the improved photoelectrochemical behavior of H-TiO2 nanorods. Our investigation shows that the improvement of PEC performance could be attributed to (i) band gap narrowing from 3.0 to 2.9 eV; (ii) improved optical absorption in the visible range induced by the three-dimensional (3D) morphology and rough surface of the disordered shell; (iii) increased proper donor density; (iv) enhanced electron-hole separation and injection efficiency due to the formation of disordered shell after hydrogenation. The RTA approach developed here can be used as a suitable hydrogenation process for TiO2 nanorods/FTO system for important applications such as photocatalysis, hydrogen generation from water splitting and solar energy conversion.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec671831
dc.identifier.issn1931-7573
dc.identifier.pmid28482648
dc.identifier.urihttps://hdl.handle.net/2445/120960
dc.language.isoeng
dc.publisherSpringer Open
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1186/s11671-017-2105-x
dc.relation.ispartofNanoscale Research Letters, 2017, vol. 12, num. 336
dc.relation.urihttps://doi.org/10.1186/s11671-017-2105-x
dc.rightscc-by (c) Wang, Xiaodan et al., 2017
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es
dc.sourceArticles publicats en revistes (Enginyeria Electrònica i Biomèdica)
dc.subject.classificationHidrogenació
dc.subject.classificationFotoelectroquímica
dc.subject.otherHydrogenation
dc.subject.otherPhotoelectrochemistry
dc.titleEnhanced photoelectrochemical behavior of H-TiO2 nanorods hydrogenated by controlled and local rapid thermal annealing
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
671831.pdf
Mida:
1.91 MB
Format:
Adobe Portable Document Format