Carregant...
Fitxers
Tipus de document
ArticleVersió
Versió publicadaData de publicació
Tots els drets reservats
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/184701
Fermi surface properties of the bifunctional organic metal κ-(BETS)2Mn[N(CN)2]3 near the metal-insulator transition
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
We present detailed studies of the high-field magnetoresistance of the layered organic metal κ-(BETS)2Mn- [N(CN)2]3 under a pressure slightly above the insulator-metal transition. The experimental data are analyzed in terms of the Fermi surface properties and compared with the results of first-principles band structure calculations. The calculated size and shape of the in-plane Fermi surface are in very good agreement with those derived from Shubnikov-de Haas oscillations as well as the classical angle-dependent magnetoresistance oscillations. A comparison of the experimentally obtained effective cyclotron masses with the calculated band masses reveals electron correlations significantly dependent on the electron momentum. The momentum- or band-dependent mobility is also reflected in the behavior of the classical magnetoresistance anisotropy in a magnetic field parallel to layers. Other characteristics of the conducting system related to interlayer charge transfer and scattering mechanisms are discussed based on the experimental data. Besides the known high-field effects associated with the Fermi surface geometry, new pronounced features have been found in the angle-dependent magnetoresistance, which might be caused by coupling of the metallic charge transport to a magnetic instability in proximity to the metal-insulator phase boundary.
Matèries (anglès)
Citació
Citació
ZVEREV, V.n., BIBERACHER, W., OBERBAUER, S., SHEIKIN, I., ALEMANY I CAHNER, Pere, CANADELL, Enric, Kartsovnik M.V.. Fermi surface properties of the bifunctional organic metal κ-(BETS)2Mn[N(CN)2]3 near the metal-insulator transition. _Physical Review B_. 2019. Vol. 99, núm. 125136. [consulta: 23 de gener de 2026]. ISSN: 2469-9950. [Disponible a: https://hdl.handle.net/2445/184701]