Convective precipitation trends in the Spanish Mediterranean region

dc.contributor.authorLlasat Botija, María del Carmen
dc.contributor.authordel Moral Méndez, Anna
dc.contributor.authorCortés Simó, Maria
dc.contributor.authorRigo, Tomeu
dc.date.accessioned2022-01-04T18:04:35Z
dc.date.available2022-01-04T18:04:35Z
dc.date.issued2021-08-10
dc.date.updated2022-01-04T18:04:35Z
dc.description.abstractThis paper aims to analyse the distribution and temporal evolution of convective precipitation in the Mediterranean region of Spain. To accomplish this goal, we used 148 sets of 5-min rainfall rate data from the 1989-2015 period. The selected regions were the Júcar Hydrographic Confederation (CHJ) and the Internal Basins of Catalonia (CIC), which cover most of the autonomous communities of Catalonia and the Valencian Community (east Spain). The average 5-min intensity threshold of 35 mm/h and the β parameter, defined as the ratio between convective precipitation versus total precipitation in any period, were used to characterise convective precipitation. Convective episodes were categorised as 'very convective', 'moderately convective', and 'slightly convective' based on the β value. After quality control, the series of 129 stations were clustered into homogeneous precipitation zones that also include β as one of the variables of characterisation. The results show that convective precipitation can contribute to total annual precipitation by up to 16% on average, but it is generated by a very small percentage of convective events (between 3% and 6% across all the stations) in comparison with the total number of rainfall episodes. In this sense, moderately convective events are the most common, with a predominantly unimodal monthly distribution of β, with summer the most convective season. Trends show a significant increase in precipitation, convective precipitation, and convective episodes in the CHJ. On the other hand, a positive trend of convective events is predominant in the CIC region, despite an overall precipitation decrease in the analysed period. These results are relevant given that extreme daily rainfall does not show a positive or significant trend, and they are in line with the impact of climate change on increased atmospheric instability and water vapour in the atmosphere. They highlight the need to work with sub-daily precipitation series in the case of the Mediterranean, which is mainly affected by flash floods.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec711266
dc.identifier.issn0169-8095
dc.identifier.urihttps://hdl.handle.net/2445/182156
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.atmosres.2021.105581
dc.relation.ispartofAtmospheric Research, 2021, vol. 257, p. 105581
dc.relation.urihttps://doi.org/10.1016/j.atmosres.2021.105581
dc.rightscc-by-nc-nd (c) Llasat Botija et al, 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceArticles publicats en revistes (Física Aplicada)
dc.subject.classificationPrecipitacions (Meteorologia)
dc.subject.classificationMediterrània (Regió)
dc.subject.classificationCanvi climàtic
dc.subject.classificationInundacions
dc.subject.otherPrecipitations (Meteorology)
dc.subject.otherMediterranean Region
dc.subject.otherClimatic change
dc.subject.otherFloods
dc.titleConvective precipitation trends in the Spanish Mediterranean region
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
711266.pdf
Mida:
2.47 MB
Format:
Adobe Portable Document Format