Carregant...
Miniatura

Tipus de document

Treball de fi de màster

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Alex Castrelo Cid, 2019
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/159317

Bioactivity-oriented de novo design of small molecules by conditional variational autoencoders

Títol de la revista

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

[en] Deep generative networks are an emerging technology in drug discovery. Our work is divided in two parts. In the first one, we built a variational autoencoder (VAE) that is able to learn the grammar of the molecules, represent them in a latent space, and generate new ones. In the second one, we built and trained a conditional variational autoencoder (CVAE) that is capable of generating new molecules based on desired properties. We will see in detail the architecture of both models and how they were trained. The molecule properties were provided by the Chemical Checker (CC), a resource of processed, harmonised and integrated small-molecule bioactivity data. We will generate different molecules with different target properties, and we will check how close the properties of the generated molecules are from the target ones. These properties are called signatures. At the end of the project we sample CC signatures with different similarity to the input molecule signatures, and we show that the signatures of the molecules generated this way resemble the sampled signatures, meaning that we can generate new random molecules based on desired properties.

Descripció

Treballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona, Any: 2019, Tutor: Jordi Vitrià i Marca

Citació

Citació

CASTRELO CID, Alex. Bioactivity-oriented de novo design of small molecules by conditional variational autoencoders. [consulta: 20 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/159317]

Exportar metadades

JSON - METS

Compartir registre