Combining theory and experiment for multitechnique characterization of activated CO2 on transition metal carbide (001) surfaces

dc.contributor.authorKunkel, Christian
dc.contributor.authorViñes Solana, Francesc
dc.contributor.authorRamírez, Pedro J.
dc.contributor.authorRodríguez, José A.
dc.contributor.authorIllas i Riera, Francesc
dc.date.accessioned2020-06-18T07:30:41Z
dc.date.available2020-06-18T07:30:41Z
dc.date.issued2018-01-15
dc.date.updated2020-06-18T07:30:41Z
dc.description.abstractEarly transition metal carbides (TMC; TM = Ti, Zr, Hf, V, Nb, Ta, Mo) with face-centered cubic crystallographic structure have emerged as promising materials for CO2 capture and activation. Density functional theory (DFT) calculations using the Perdew-Burke-Ernzerhof exchange-correlation functional evidence charge transfer from the TMC surface to CO2 on the two possible adsorption sites, namely, MMC and TopC, and the electronic structure and binding strength differences are discussed. Further, the suitability of multiple experimental techniques with respect to (1) adsorbed CO2 recognition and (2) MMC/TopC adsorption distinction is assessed from extensive DFT simulations. Results show that ultraviolet photoemission spectroscopies (UPS), work function changes, core level X-ray photoemission spectroscopy (XPS), and changes in linear optical properties could well allow for adsorbed CO2 detection. Only infrared (IR) spectra and scanning tunnelling microscopy (STM) seem to additionally allow for MMC/TopC adsorption site distinction. These findings are confirmed with experimental XPS measurements, demonstrating CO2 binding on single crystal (001) surfaces of TiC, ZrC, and VC. The experiments also help resolving ambiguities for VC, where CO2 activation was unexpected due to low adsorption energy, but could be related to kinetic trapping involving a desorption barrier. With a wealth of data reported and direct experimental evidence provided, this study aims to motivate further basic surface science experiments on an interesting case of CO2 activating materials, allowing also for a benchmark of employed theoretical models.
dc.format.extent10 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec683382
dc.identifier.issn1932-7447
dc.identifier.urihttps://hdl.handle.net/2445/166170
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1021/acs.jpcc.7b12227
dc.relation.ispartofJournal of Physical Chemistry C, 2018, vol. 123, num. 13, p. 7567-7576
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/676580/EU//NoMaD
dc.relation.urihttps://doi.org/10.1021/acs.jpcc.7b12227
dc.rights(c) American Chemical Society , 2018
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Ciència dels Materials i Química Física)
dc.subject.classificationTeoria del funcional de densitat
dc.subject.classificationAdsorció
dc.subject.classificationDissociació (Química)
dc.subject.otherDensity functionals
dc.subject.otherAdsorption
dc.subject.otherDissociation
dc.titleCombining theory and experiment for multitechnique characterization of activated CO2 on transition metal carbide (001) surfaces
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
683382.pdf
Mida:
16.45 MB
Format:
Adobe Portable Document Format