Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Picardo, Massimo et al., 2021
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/176378

A data independent acquisition all ion fragmentation mode tool for the suspect screening of natural toxins in surface water

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Among natural freshwater pollutants, cyanotoxins, mycotoxins, and phytotoxins are the most important and less studied. Their identification in surface water is challenging especially cause of the lack of standards and established analytical parameters. Most target methods focus one or a single group of compounds with similar characteristics. Here we present an AIF fast method for the tentative identification of natural toxins in water. Respect to the previous method [1], it offers higher performances for the acquisition of unknown compounds at low levels for higher number of analytes.The key aspects of the method are: -The qualitative screening DIA-AIF workflow using Q Exactive Orbitrap. Both targeted and suspect screening bases have been combined with online databases and suspect list to retrieve candidates as suspect natural toxins and their metabolites or degradation products. -The in-silico analysis of mass spectrums allowed a fast structural characterization. -The workflow has been finally applied to real samples coming from the Czech Republic, Italy, and Spain allowing the determination of 17 suspect natural toxins, 4 of them confirmed. None toxin passed the limit of 1 µg/L taken from the legislation applied for microcystin LR and arbitrarily extended to all toxins.

Citació

Citació

PICARDO, Massimo, NÚÑEZ BURCIO, Oscar, FARRÉ, Marinella. A data independent acquisition all ion fragmentation mode tool for the suspect screening of natural toxins in surface water. _MethodsX_. 2021. Vol. 8, núm. 101286. [consulta: 22 de gener de 2026]. ISSN: 2215-0161. [Disponible a: https://hdl.handle.net/2445/176378]

Exportar metadades

JSON - METS

Compartir registre