Carregant...
Fitxers
Tipus de document
ArticleVersió
Versió publicadaData de publicació
Tots els drets reservats
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/18895
Extreme times for volatility processes
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
Extreme times techniques, generally applied to nonequilibrium statistical mechanical processes, are also useful for a better understanding of financial markets. We present a detailed study on the mean first-passage time for the volatility of return time series. The empirical results extracted from daily data of major indices seem to follow the same law regardless of the kind of index thus suggesting an universal pattern. The empirical mean first-passage time to a certain level L is fairly different from that of the Wiener process showing a dissimilar behavior depending on whether L is higher or lower than the average volatility. All of this indicates a more complex dynamics in which a reverting force drives volatility toward its mean value. We thus present the mean first-passage time expressions of the most common stochastic volatility models whose approach is comparable to the random diffusion description. We discuss asymptotic approximations of these models and confront them to empirical results with a good agreement with the exponential Ornstein-Uhlenbeck model.
Matèries
Matèries (anglès)
Citació
Citació
MASOLIVER, Jaume, PERELLÓ, Josep. Extreme times for volatility processes. _Physical Review E_. 2007. Vol. 75, núm. 4, pàgs. 046110-1-046110-12. [consulta: 21 de gener de 2026]. ISSN: 1063-651X. [Disponible a: https://hdl.handle.net/2445/18895]