Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c) Sanz-Cortes et al., 2013
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/121872

Automatic quantitative MRI texture analysis in small-for-gestational-age fetuses discriminates abnormal neonatal neurobehavior

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Background: We tested the hypothesis whether texture analysis (TA) from MR images could identify patterns associated with an abnormal neurobehavior in small for gestational age (SGA) neonates. Methods: Ultrasound and MRI were performed on 91 SGA fetuses at 37 weeks of GA. Frontal lobe, basal ganglia, mesencephalon and cerebellum were delineated from fetal MRIs. SGA neonates underwent NBAS test and were classified as abnormal if $1 area was ,5th centile and as normal if all areas were .5th centile. Textural features associated with neurodevelopment were selected and machine learning was used to model a predictive algorithm. Results: Of the 91 SGA neonates, 49 were classified as normal and 42 as abnormal. The accuracies to predict an abnormal neurobehavior based on TA were 95.12% for frontal lobe, 95.56% for basal ganglia, 93.18% for mesencephalon and 83.33% for cerebellum. Conclusions: Fetal brain MRI textural patterns were associated

Matèries (anglès)

Citació

Citació

SANZ CORTÉS, Magdalena, RATTA, Giuseppe a., FIGUERAS RETUERTA, Francesc, BONET CARNÉ, Elisenda, PADILLA GOMES, Nelly, ARRANZ BETEGÓN, Ángela, BARGALLÓ ALABART, Núria​, GRATACÓS SOLSONA, Eduard. Automatic quantitative MRI texture analysis in small-for-gestational-age fetuses discriminates abnormal neonatal neurobehavior. _PLoS One_. 2013. Vol. 8, núm. 7, pàgs. e69595. [consulta: 23 de gener de 2026]. ISSN: 1932-6203. [Disponible a: https://hdl.handle.net/2445/121872]

Exportar metadades

JSON - METS

Compartir registre