A study of carbon nanofibers and active carbon as symmetric supercapacitor in aqueous electrolyte: a comparative study

dc.contributor.authorDaragmeh, Allan
dc.contributor.authorHussain, Shahzad
dc.contributor.authorSaadeddin, Iyad
dc.contributor.authorServera Serapio, Llorenç
dc.contributor.authorXuriguera Martín, María Elena
dc.contributor.authorCornet i Calveras, Albert
dc.contributor.authorCirera Hernández, Albert
dc.date.accessioned2018-03-14T15:43:50Z
dc.date.available2018-03-14T15:43:50Z
dc.date.issued2017-12-29
dc.date.updated2018-03-14T15:43:51Z
dc.description.abstractSymmetric supercapacitors are fabricated by carbon nanofibers (CNF) and activated carbon (AC) using similar proportions of 7 wt% polyvinylidene fluoride (PVDF) polymer binder in an aqueous electrolyte. In this study, a comparison of porous texture and electrochemical performances between CNFs and AC based supercapacitors was carried out. Electrodes were assembled in the cell without a current collector. The prepared electrodes of CNFs and AC present Brunauer-Emmett-Teller (BET) surface area of 83 and 1042 m2/g, respectively. The dominant pore structure for CNFs is mesoporous while for AC is micropore. The results showed that AC provided higher specific capacitance retention up to very fast scan rate of 500 mV/s. AC carbon had a specific capacitance of 334 F/g, and CNFs had 52 F/g at scan rate 5 mV/s in aqueous solution. Also, the results indicate the superior conductivity of CNFs in contrast to AC counterparts. The measured equivalent series resistance (ESR) showed a very small value for CNFs (0.28 Ω) in comparison to AC that has an ESR resistance of (3.72 Ω). Moreover, CNF delivered higher specific power (1860 W/kg) than that for AC (450 W/kg). On the other hand, AC gave higher specific energy (18.1 Wh/kg) than that for CNFs (2 Wh/kg).This indicates that the AC is good for energy applications. Whereas, CNF is good for power application. Indeed, the higher surface area will lead to higher specific capacitance and hence higher energy density for AC. For CNF, lower ESR is responsible for having higher power density.
dc.format.extent10 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec678641
dc.identifier.issn1931-7573
dc.identifier.pmid29288337
dc.identifier.urihttps://hdl.handle.net/2445/120725
dc.language.isoeng
dc.publisherSpringerOpen
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1186/s11671-017-2415-z
dc.relation.ispartofNanoscale Research Letters, 2017, vol. 12, num. 639
dc.relation.urihttps://doi.org/10.1186/s11671-017-2415-z
dc.rightscc-by (c) Daragmeh, Allan et al., 2017
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es
dc.sourceArticles publicats en revistes (Enginyeria Electrònica i Biomèdica)
dc.subject.classificationNanoestructures
dc.subject.classificationElectròlits
dc.subject.classificationCarbó activat
dc.subject.otherNanostructures
dc.subject.otherElectrolytes
dc.subject.otherActivated carbon
dc.titleA study of carbon nanofibers and active carbon as symmetric supercapacitor in aqueous electrolyte: a comparative study
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
678641.pdf
Mida:
2.28 MB
Format:
Adobe Portable Document Format