On modular forms and the inverse Galois problem

dc.contributor.authorDieulefait, L. V. (Luis Victor)
dc.contributor.authorWiese, Gabor
dc.date.accessioned2016-04-01T10:47:07Z
dc.date.available2016-04-01T10:47:07Z
dc.date.issued2011-09
dc.date.updated2016-04-01T10:47:12Z
dc.description.abstractIn this article new cases of the inverse Galois problem are established. The main result is that for a fixed integer $ n$, there is a positive density set of primes $ p$ such that $ \mathrm{PSL}_2(\mathbb{F}_{p^n})$ occurs as the Galois group of some finite extension of the rational numbers. These groups are obtained as projective images of residual modular Galois representations. Moreover, families of modular forms are constructed such that the images of all their residual Galois representations are as large as a priori possible. Both results essentially use Khare's and Wintenberger's notion of good-dihedral primes. Particular care is taken in order to exclude nontrivial inner twists.
dc.format.extent16 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec606168
dc.identifier.issn0002-9947
dc.identifier.urihttps://hdl.handle.net/2445/96846
dc.language.isoeng
dc.publisherAmerican Mathematical Society (AMS)
dc.relation.isformatofReproducció del document publicat a: http://dx.doi.org/10.1090/S0002-9947-2011-05477-2
dc.relation.ispartofTransactions of the American Mathematical Society, 2011, vol. 363, num. 9, p. 4569-4584
dc.relation.urihttp://dx.doi.org/10.1090/S0002-9947-2011-05477-2
dc.rights(c) American Mathematical Society (AMS), 2011
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationGrups discontinus
dc.subject.classificationFormes automòrfiques
dc.subject.classificationTeoria de nombres
dc.subject.otherDiscontinuous groups
dc.subject.otherAutomorphic forms
dc.subject.otherNumber theory
dc.titleOn modular forms and the inverse Galois problem
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
606168.pdf
Mida:
271.98 KB
Format:
Adobe Portable Document Format