Applying deep learning for food image analysis

dc.contributor.advisorRadeva, Petia
dc.contributor.authorMarrugat Torregrosa, Gerard
dc.date.accessioned2020-05-14T07:36:50Z
dc.date.available2020-05-14T07:36:50Z
dc.date.issued2019-09-02
dc.descriptionTreballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona, Any: 2019, Tutor: Petia Radevaca
dc.description.abstract[en] Food is an important component in people’s daily life, examples of the previous assertion are the range of possible diets according to the animal or vegetal origin, the intolerance to some aliments and lately the increasing number of food pictures in social networks. Several computer vision approaches have been proposed for tackling food analysis problems, but few effort has been done in taking benefit of the hierarchical relation between elements in a food image; dish and ingredients. In this project the highly performing state of the art CNN method is adapted concatenating an ontology layer, a multidimensional layer which contains the relation between the elements, in order to help during the classification process. Different structures for the ontology have been tested to prove which relations have the most beneficial impact, and which are less relevant. Additionally to structure, the value of the elements that compound this hierarchical relation layer play an important role, therefore the experiments performed contained different weighted relations between the components. The ontology layer is built with the labels of the multiple task in the dataset used to train the model. At the end, the results obtained will be compared to a baseline model without the ontology layer and it will be appreciated how hierarchical relations between tasks benefits classification. Finally, the result will be a model which will be able to simultaneously predict two food-related tasks; dish and ingredients.ca
dc.format.extent32 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/160143
dc.language.isoengca
dc.rightscc-by-sa (c) Gerard Marrugat Torregrosa, 2019
dc.rightscodi: GPL (c) Gerard Marrugat Torregrosa, 2019
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-sa/3.0/es/*
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html*
dc.sourceMàster Oficial - Fonaments de la Ciència de Dades
dc.subject.classificationVisió per ordinador
dc.subject.classificationXarxes neuronals (Informàtica)
dc.subject.classificationTreballs de fi de màster
dc.subject.classificationSistemes classificadors (Intel·ligència artificial)
dc.subject.classificationAliments
dc.subject.classificationAprenentatge automàticca
dc.subject.otherComputer vision
dc.subject.otherNeural networks (Computer science)
dc.subject.otherMaster's theses
dc.subject.otherLearning classifier systems
dc.subject.otherFood
dc.subject.otherMachine learningen
dc.titleApplying deep learning for food image analysisca
dc.typeinfo:eu-repo/semantics/masterThesisca

Fitxers

Paquet original

Mostrant 1 - 3 de 3
Carregant...
Miniatura
Nom:
food_analysis-master.zip
Mida:
12.04 MB
Format:
ZIP file
Descripció:
Codi font
Carregant...
Miniatura
Nom:
Github repository and blog entry.pdf
Mida:
297.23 KB
Format:
Adobe Portable Document Format
Descripció:
Repositori Github
Carregant...
Miniatura
Nom:
160143.pdf
Mida:
2.03 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria