Sherali-Adams Relaxations and Indistinguishability in Counting Logics

dc.contributor.authorAtserias, Albert
dc.contributor.authorManeva, Elitza
dc.date.accessioned2013-02-19T11:54:16Z
dc.date.available2013-02-19T11:54:16Z
dc.date.issued2013-01-17
dc.date.updated2013-02-19T11:42:38Z
dc.description.abstractTwo graphs with adjacency matrices $\mathbf{A}$ and $\mathbf{B}$ are isomorphic if there exists a permutation matrix $\mathbf{P}$ for which the identity $\mathbf{P}^{\mathrm{T}} \mathbf{A} \mathbf{P} = \mathbf{B}$ holds. Multiplying through by $\mathbf{P}$ and relaxing the permutation matrix to a doubly stochastic matrix leads to the linear programming relaxation known as fractional isomorphism. We show that the levels of the Sherali--Adams (SA) hierarchy of linear programming relaxations applied to fractional isomorphism interleave in power with the levels of a well-known color-refinement heuristic for graph isomorphism called the Weisfeiler--Lehman algorithm, or, equivalently, with the levels of indistinguishability in a logic with counting quantifiers and a bounded number of variables. This tight connection has quite striking consequences. For example, it follows immediately from a deep result of Grohe in the context of logics with counting quantifiers that a fixed number of levels of SA suffice to determine isomorphism of planar and minor-free graphs. We also offer applications in both finite model theory and polyhedral combinatorics. First, we show that certain properties of graphs, such as that of having a flow circulation of a prescribed value, are definable in the infinitary logic with counting with a bounded number of variables. Second, we exploit a lower bound construction due to Cai, Fürer, and Immerman in the context of counting logics to give simple explicit instances that show that the SA relaxations of the vertex-cover and cut polytopes do not reach their integer hulls for up to $\Omega(n)$ levels, where $n$ is the number of vertices in the graph.
dc.format.extent26 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec619363
dc.identifier.issn0097-5397
dc.identifier.urihttps://hdl.handle.net/2445/33855
dc.language.isoeng
dc.publisherSociety for Industrial and Applied Mathematics
dc.relation.isformatofReproducció del document publicat a: http://dx.doi.org/10.1137/120867834
dc.relation.ispartofSIAM Journal on Computing, 2013, vol. 42, num. 1, p. 112-137
dc.relation.urihttp://dx.doi.org/10.1137/120867834
dc.rights(c) Society for Industrial and Applied Mathematics., 2013
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationLògica de primer ordre
dc.subject.classificationProgramació lineal
dc.subject.classificationTeoria de grafs
dc.subject.otherFirst-order logic
dc.subject.otherLinear programming
dc.subject.otherGraph theory
dc.titleSherali-Adams Relaxations and Indistinguishability in Counting Logicseng
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
619363.pdf
Mida:
339 KB
Format:
Adobe Portable Document Format