Carregant...
Tipus de document
Treball de fi de màsterData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/134758
Sentiment analysis of student evaluation of teaching
Títol de la revista
Autors
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
[en] After every semester in University of Barcelona all students are asked to fill a survey about professors and subjects from the previous semester. Students provide evaluation by answering two different kinds of questions - quantitative (numeric), and qualitative (open text). It would be useful for the professors, the program coordinators, and for the directors of the departments to have an automatic quantitative
overview of the textual answers.
The goals of this project are twofold: 1) to create a supervised dataset for sentiment analysis and polarity detection of student opinions in two languages (Catalan and Spanish); and 2) to validate the dataset empirically and propose competitive baselines by investigating, implementing and comparing sentiment analysis algorithms and methods to automatically classify student comments as positive, negative or neutral.
Descripció
Treballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona, Any: 2018, Tutor: Venelin Kovachev, Eloi Puertas i Prats i M. Antònia Martí Antonin
Citació
Citació
IKAUNIECE, Indra. Sentiment analysis of student evaluation of teaching. [consulta: 23 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/134758]