Carregant...
Miniatura

Tipus de document

Treball de fi de màster

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Indra Ikauniece, 2018
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/134758

Sentiment analysis of student evaluation of teaching

Títol de la revista

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

[en] After every semester in University of Barcelona all students are asked to fill a survey about professors and subjects from the previous semester. Students provide evaluation by answering two different kinds of questions - quantitative (numeric), and qualitative (open text). It would be useful for the professors, the program coordinators, and for the directors of the departments to have an automatic quantitative overview of the textual answers. The goals of this project are twofold: 1) to create a supervised dataset for sentiment analysis and polarity detection of student opinions in two languages (Catalan and Spanish); and 2) to validate the dataset empirically and propose competitive baselines by investigating, implementing and comparing sentiment analysis algorithms and methods to automatically classify student comments as positive, negative or neutral.

Descripció

Treballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona, Any: 2018, Tutor: Venelin Kovachev, Eloi Puertas i Prats i M. Antònia Martí Antonin

Citació

Citació

IKAUNIECE, Indra. Sentiment analysis of student evaluation of teaching. [consulta: 23 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/134758]

Exportar metadades

JSON - METS

Compartir registre