Carregant...
Fitxers
Tipus de document
ArticleVersió
Versió publicadaData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/192522
From $H^\infty$ to $N$. Pointwise properties and algebraic structure in the Nevanlinna class
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
This survey shows how, for the Nevanlinna class $\mathcal{N}$ of the unit disc, one can define and often characterize the analogues of well-known objects and properties related to the algebra of bounded analytic functions $\mathcal{H}^{\infty}$ : interpolating sequences, Corona theorem, sets of determination, stable rank, as well as the more recent notions of Weak Embedding Property and threshold of invertibility for quotient algebras. The general rule we observe is that a given result for $\mathcal{H}^{\infty}$ can be transposed to $\mathcal{N}$ by replacing uniform bounds by a suitable control by positive harmonic functions. We show several instances where this rule applies, as well as some exceptions. We also briefly discuss the situation for the related Smirnov class.
Matèries (anglès)
Citació
Citació
MASSANEDA CLARES, Francesc xavier, THOMAS, Pascal j.. From $H^\infty$ to $N$. Pointwise properties and algebraic structure in the Nevanlinna class. _Concrete Operators_. 2020. Vol. 7, núm. 1, pàgs. 91-115. [consulta: 23 de gener de 2026]. ISSN: 2299-3282. [Disponible a: https://hdl.handle.net/2445/192522]