Theoretical study of the dynamics, stereodynamics and microscopic mechanism of the O(1D) + CH4(X1A 1) → OH(X2Π) + CH3(X2 A2'') reaction

dc.contributor.authorGonzález Pérez, Miguel
dc.contributor.authorHernando, Jordi
dc.contributor.authorPuyuelo, Maria P.
dc.contributor.authorSayós Ortega, Ramón
dc.date.accessioned2020-06-04T09:49:42Z
dc.date.available2020-06-04T09:49:42Z
dc.date.issued2000-10-12
dc.date.updated2020-06-04T09:49:42Z
dc.description.abstractA previously reported potential energy surface (PES) and a new barrierless PES (both based on ab initio data and describing the CH3 group as a pseudoatom) were used to study the O(1D)+CH4→OH+CH3 reaction with the quasiclassical trajectory (QCT) method. The new PES accurately reproduces the experimental rate constant values, in contrast to the previous PES. The QCT study was mainly performed at the relative translational energy (ET) resulting from the photodissociation of N2O at 193 nm (⟨ET⟩=0.403 eV), although the collision energy obtained from the photodissociation of O3 at 248 nm (⟨ET⟩=0.212 eV) was also considered. Good agreement between theory and experiment was obtained for the OH vibrational populations and for the OH rotational populations for the v′⩾2 vibrational levels, while the rotational distributions for v′=0-1 are more excited than in the experiment. The QCT results at ET=0.403 eV satisfactorily reproduce the experimental kk′ angular distribution of the state-specific channel OH(v′=4, N′=8) and the corresponding E′T distribution. For OH(v′=0, N′=5) the reproduction of these properties is poorer, especially for the E′T distribution. At 0.403 eV the contribution of the abstraction mechanism to the reaction mode is negligible and two insertion like mechanisms (with fast or slow elimination) are found to be predominant, as suggested experimentally. The discrepancies observed between the QCT and experimental results can be explained on the basis of the defective description of the insertion/slow elimination mechanism provided by the model.
dc.format.extent12 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec174586
dc.identifier.issn0021-9606
dc.identifier.urihttps://hdl.handle.net/2445/164263
dc.language.isoeng
dc.publisherAmerican Institute of Physics
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1063/1.1289823
dc.relation.ispartofJournal of Chemical Physics, 2000, vol. 113, num. 16, p. 6748-6759
dc.relation.urihttps://doi.org/10.1063/1.1289823
dc.rights(c) American Institute of Physics , 2000
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Ciència dels Materials i Química Física)
dc.subject.classificationQuímica quàntica
dc.subject.classificationDissociació (Química)
dc.subject.classificationSimulació per ordinador
dc.subject.classificationDinàmica molecular
dc.subject.otherQuantum chemistry
dc.subject.otherDissociation
dc.subject.otherComputer simulation
dc.subject.otherMolecular dynamics
dc.titleTheoretical study of the dynamics, stereodynamics and microscopic mechanism of the O(1D) + CH4(X1A 1) → OH(X2Π) + CH3(X2 A2'') reaction
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
174586.pdf
Mida:
179.96 KB
Format:
Adobe Portable Document Format