Elemental fingerprinting combined with machine learning techniques as a powerful tool for geographical discrimination of honeys from nearby regions

dc.contributor.authorMara, Andrea
dc.contributor.authorMigliorini, Matteo
dc.contributor.authorCiulu, Marco
dc.contributor.authorChignola, Roberto
dc.contributor.authorEgido, Carla
dc.contributor.authorNúñez Burcio, Oscar
dc.contributor.authorSentellas, Sonia
dc.contributor.authorSaurina, Javier
dc.contributor.authorCaredda, Marco
dc.contributor.authorDeroma, Mario A.
dc.contributor.authorDeidda, Sara
dc.contributor.authorLangasco, Ilaria
dc.contributor.authorPilo, Maria I.
dc.contributor.authorSpano, Nadia
dc.contributor.authorSanna, Gavino
dc.date.accessioned2024-01-23T15:15:14Z
dc.date.available2024-01-23T15:15:14Z
dc.date.issued2024-01-12
dc.date.updated2024-01-23T15:15:14Z
dc.description.abstractDiscrimination of honey based on geographical origin is a common fraudulent practice and is one of the most investigated topics in honey authentication. This research aims to discriminate honeys according to their geographical origin by combining elemental fingerprinting with machine-learning techniques. In particular, the main objective of this study is to distinguish the origin of unifloral and multifloral honeys produced in neighboring regions, such as Sardinia (Italy) and Spain. The elemental compositions of 247 honeys were determined using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The origins of honey were differentiated using Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Random Forest (RF). Compared to LDA, RF demonstrated greater stability and better classification performance. The best classification was based on geographical origin, achieving 90% accuracy using Na, Mg, Mn, Sr, Zn, Ce, Nd, Eu, and Tb as predictors.
dc.format.extent14 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec741436
dc.identifier.issn2304-8158
dc.identifier.urihttps://hdl.handle.net/2445/206171
dc.language.isoeng
dc.publisherMDPI
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3390/foods13020243
dc.relation.ispartofFoods, 2024, vol. 13, num.2, p. 1-14
dc.relation.urihttps://doi.org/10.3390/foods13020243
dc.rightscc-by (c) Mara, A. et al., 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Enginyeria Química i Química Analítica)
dc.subject.classificationMel d'abelles
dc.subject.classificationTaxonomia botànica
dc.subject.classificationEspectrometria de masses de plasma acoblat inductivament
dc.subject.otherHoney
dc.subject.otherBotanical taxonomy
dc.subject.otherInductively coupled plasma mass spectrometry
dc.titleElemental fingerprinting combined with machine learning techniques as a powerful tool for geographical discrimination of honeys from nearby regions
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
838982.pdf
Mida:
1.68 MB
Format:
Adobe Portable Document Format