Carregant...
Tipus de document
Treball de fi de màsterData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/223276
Application of One Class Models for Financial Risk Classification
Títol de la revista
Autors
Director/Tutor
ISSN de la revista
Títol del volum
Resum
This project explores the use of One Class Classification methods to predict credit risk in highly imbalanced financial datasets. Unlike traditional supervised models, OCC approaches focus only on the majority class, in this case, customers with good payment behaviour, and aim to detect unusual patterns that might suggest a higher
risk of default. The study is divided into three experimental phases. The first phase uses a limited set of 13 variables, selected and categorised by experts based on risk. The second phase removes this expert selection and uses all available features. In the third phase, a hybrid strategy is tested by adding the anomaly scores generated by OCC models as extra input variables to supervised models.
The models are evaluated using ROC AUC and PR AUC, two metrics well suited for imbalanced classification problems. The main goal is to analyse whether anomaly detection techniques can support or improve current risk assessment strategies in a real business setting.
However, the results did not confirm the initial hypothesis, as One Class models and hybrid approaches did not outperform traditional supervised methods.
Descripció
Treballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Any: 2025. Tutor: Oriol Pujol Vila
Matèries (anglès)
Citació
Citació
REY DAVILA, Ana. Application of One Class Models for Financial Risk Classification. [consulta: 8 de desembre de 2025]. [Disponible a: https://hdl.handle.net/2445/223276]