Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/50931

Thermodynamic stability of nanosized multicomponent bubbles/droplets: The square gradient theory and the capillary approach

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Formation of nanosized droplets/bubbles from a metastable bulk phase is connected to many unresolved scientific questions. We analyze the properties and stability of multicomponent droplets and bubbles in the canonical ensemble, and compare with single-component systems. The bubbles/droplets are described on the mesoscopic level by square gradient theory. Furthermore, we compare the results to a capillary model which gives a macroscopic description. Remarkably, the solutions of the square gradient model, representing bubbles and droplets, are accurately reproduced by the capillary model except in the vicinity of the spinodals. The solutions of the square gradient model form closed loops, which shows the inherent symmetry and connected nature of bubbles and droplets. A thermodynamic stability analysis is carried out, where the second variation of the square gradient description is compared to the eigenvalues of the Hessian matrix in the capillary description. The analysis shows that it is impossible to stabilize arbitrarily small bubbles or droplets in closed systems and gives insight into metastable regions close to the minimum bubble/droplet radii. Despite the large difference in complexity, the square gradient and the capillary model predict the same finite threshold sizes and very similar stability limits for bubbles and droplets, both for single-component and two-component systems.

Citació

Citació

WILHELMSEN, Øivind, BEDEAUX, Dick, KJELSTRUP, Signe, REGUERA, D. (david). Thermodynamic stability of nanosized multicomponent bubbles/droplets: The square gradient theory and the capillary approach. _Journal of Chemical Physics_. 2014. Vol. 140, núm. 024704-1-02474-9. [consulta: 2 de febrer de 2026]. ISSN: 0021-9606. [Disponible a: https://hdl.handle.net/2445/50931]

Exportar metadades

JSON - METS

Compartir registre