Quantitative parameters for the examination of InGaN QW multilayers by low-loss EELS

dc.contributor.authorEljarrat Ascunce, Alberto
dc.contributor.authorLópez Conesa, Lluís
dc.contributor.authorMagén, César
dc.contributor.authorGarcía-Lepetit, Noemí
dc.contributor.authorGacevic, Zarko
dc.contributor.authorCalleja Pardo, Enrique
dc.contributor.authorPeiró Martínez, Francisca
dc.contributor.authorEstradé Albiol, Sònia
dc.date.accessioned2017-03-01T10:34:31Z
dc.date.available2017-03-01T10:34:31Z
dc.date.issued2016-08-02
dc.date.updated2017-03-01T10:34:31Z
dc.description.abstractWe present a detailed examination of a multiple InxGa1−xN quantum well (QW) structure for optoelectronic applications. The characterization is carried out using scanning transmission electron microscopy (STEM), combining high-angle annular dark field (HAADF) imaging and electron energy loss spectroscopy (EELS). Fluctuations in the QW thickness and composition are observed in atomic resolution images. The impact of these small changes on the electronic properties of the semiconductor material is measured through spatially localized low-loss EELS, obtaining band gap and plasmon energy values. Because of the small size of the InGaN QW layers additional effects hinder the analysis. Hence, additional parameters were explored, which can be assessed using the same EELS data and give further information. For instance, plasmon width was studied using a model-based fit approach to the plasmon peak; observing a broadening of this peak can be related to the chemical and structural inhomogeneity in the InGaN QW layers. Additionally, Kramers-Kronig analysis (KKA) was used to calculate the complex dielectric function (CDF) from the EELS spectrum images (SIs). After this analysis, the electron effective mass and the sample absolute thickness were obtained, and an alternative method for the assessment of plasmon energy was demonstrated. Also after KKA, the normalization of the energy-loss spectrum allows us to analyze the Ga 3d transition, which provides additional chemical information at great spatial resolution. Each one of these methods is presented in this work together with a critical discussion of their advantages and drawbacks.
dc.format.extent13 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec664517
dc.identifier.issn1463-9076
dc.identifier.pmid27499340
dc.identifier.urihttps://hdl.handle.net/2445/107590
dc.language.isoeng
dc.publisherRoyal Society of Chemistry
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1039/C6CP04493J
dc.relation.ispartofPhysical Chemistry Chemical Physics, 2016, vol. 18, num. 33, p. 23264-23276
dc.relation.urihttps://doi.org/10.1039/C6CP04493J
dc.rightscc-by (c) Eljarrat Ascunce, Alberto et al., 2016
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es
dc.sourceArticles publicats en revistes (Enginyeria Electrònica i Biomèdica)
dc.subject.classificationEspectroscòpia de pèrdua d'energia d'electrons
dc.subject.classificationPous quàntics
dc.subject.classificationMicroscòpia electrònica de transmissió
dc.subject.otherElectron energy loss spectroscopy
dc.subject.otherQuantum wells
dc.subject.otherTransmission electron microscopy
dc.titleQuantitative parameters for the examination of InGaN QW multilayers by low-loss EELS
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
664517.pdf
Mida:
6.99 MB
Format:
Adobe Portable Document Format