Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c) Salcedo-Sanz, Sancho et al., 2014
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/69485

Effectively Tackling Reinsurance Problems by Using Evolutionary and Swarm Intelligence Algorithms

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

This paper is focused on solving different hard optimization problems that arise in the field of insurance and, more specifically, in reinsurance problems. In this area, the complexity of the models and assumptions considered in the definition of the reinsurance rules and conditions produces hard black-box optimization problems -problems in which the objective function does not have an algebraic expression, but it is the output of a system - usually a computer program, which must be solved in order to obtain the optimal output of the reinsurance. The application of traditional optimization approaches is not possible in this kind of mathematical problem, so new computational paradigms must be applied to solve these problems. In this paper, we show the performance of two evolutionary and swarm intelligence techniques -evolutionary programming and particle swarm optimization-. We provide an analysis in three black-box optimization problems in reinsurance, where the proposed approaches exhibit an excellent behavior, finding the optimal solution within a fraction of the computational cost used by inspection or enumeration methods.

Citació

Citació

SALCEDO-SANZ, Sancho, CARRO-CALVO, Leo, CLARAMUNT BIELSA, M. mercè, CASTAÑER, Anna, MÁRMOL, Maite. Effectively Tackling Reinsurance Problems by Using Evolutionary and Swarm Intelligence Algorithms. _Risks _. 2014. Vol. 2014, núm. 2, pàgs. 132-145. [consulta: 22 de gener de 2026]. ISSN: 2227-9091. [Disponible a: https://hdl.handle.net/2445/69485]

Exportar metadades

JSON - METS

Compartir registre