El CRAI romandrà tancat del 24 de desembre de 2025 al 6 de gener de 2026. La validació de documents es reprendrà a partir del 7 de gener de 2026.
El CRAI permanecerá cerrado del 24 de diciembre de 2025 al 6 de enero de 2026. La validación de documentos se reanudará a partir del 7 de enero de 2026.
From 2025-12-24 to 2026-01-06, the CRAI remain closed and the documents will be validated from 2026-01-07.
 

Regulation of cell cycle progression by cell-cell and cell-matrix forces

dc.contributor.authorUroz, Marina
dc.contributor.authorWistorf, Sabrina
dc.contributor.authorSerra Picamal, Xavier
dc.contributor.authorConte, Vito
dc.contributor.authorSales i Pardo, Marta
dc.contributor.authorRoca-Cusachs Soulere, Pere
dc.contributor.authorGuimerà Manrique, Roger
dc.contributor.authorTrepat Guixer, Xavier
dc.date.accessioned2018-10-09T15:52:39Z
dc.date.available2018-11-25T06:10:24Z
dc.date.issued2018-05-25
dc.date.updated2018-10-09T15:52:39Z
dc.description.abstractIt has long been proposed that the cell cycle is regulated by physical forces at the cell-cell and cell-extracellular matrix (ECM) interfaces. However, the evolution of these forces during the cycle has never been measured in a tissue, and whether this evolution affects cell cycle progression is unknown. Here, we quantified cell-cell tension and cell-ECM traction throughout the complete cycle of a large cell population in a growing epithelium. These measurements unveil temporal mechanical patterns that span the entire cell cycle and regulate its duration, the G1-S transition and mitotic rounding. Cells subjected to higher intercellular tension exhibit a higher probability to transition from G1 to S, as well as shorter G1 and S-G2-M phases. Moreover, we show that tension and mechanical energy are better predictors of the duration of G1 than measured geometric properties. Tension increases during the cell cycle but decreases 3 hours before mitosis. Using optogenetic control of contractility, we show that this tension drop favours mitotic rounding. Our results establish that cell cycle progression is regulated cooperatively by forces between the dividing cell and its neighbours.
dc.format.extent21 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec682008
dc.identifier.issn1465-7392
dc.identifier.pmid29802405
dc.identifier.urihttps://hdl.handle.net/2445/125204
dc.language.isoeng
dc.publisherNature Publishing Group
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1038/s41556-018-0107-2
dc.relation.ispartofNature Cell Biology, 2018, vol. 20, num. 6, p. 646-654
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/731957/EU//MECHANO-CONTROL
dc.relation.urihttps://doi.org/10.1038/s41556-018-0107-2
dc.rights(c) Uroz, Marina et al., 2018
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Biomedicina)
dc.subject.classificationCicle cel·lular
dc.subject.classificationMatriu extracel·lular
dc.subject.classificationCèl·lules epitelials
dc.subject.otherCell cycle
dc.subject.otherExtracellular matrix
dc.subject.otherEpithelial cells
dc.titleRegulation of cell cycle progression by cell-cell and cell-matrix forces
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
682008.pdf
Mida:
12.4 MB
Format:
Adobe Portable Document Format