Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/159377

Unraveling the hidden complexity of quasideterministic ratchets: random walks, graphs, and circle maps

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Brownian ratchets are shown to feature a nontrivial vanishing-noise limit where the dynamics is reduced to a stochastic alternation between two deterministic circle maps (quasideterministic ratchets). Motivated by cooperative dynamics of molecular motors, here we solve exactly the problem of two interacting quasideterministic ratchets. We show that the dynamics can be described as a random walk on a graph that is specific to each set of parameters. We compute point by point the exact velocity-force V ( f ) function as a summation over all paths in the specific graph for each f , revealing a complex structure that features self-similarity and nontrivial continuity properties. From a general perspective, we unveil that the alternation of two simple piecewise linear circle maps unfolds a very rich variety of dynamical complexity, in particular the phenomenon of piecewise chaos, where chaos emerges from the combination of nonchaotic maps. We show convergence of the finite-noise case to our exact solution.

Citació

Citació

BLANCH MERCADER, Carles, GÓMEZ ORLANDI, Javier, CASADEMUNT I VIADER, Jaume. Unraveling the hidden complexity of quasideterministic ratchets: random walks, graphs, and circle maps. _Physical Review E_. 2020. Vol. 101, núm. 1, pàgs. 012203. [consulta: 14 de gener de 2026]. ISSN: 1539-3755. [Disponible a: https://hdl.handle.net/2445/159377]

Exportar metadades

JSON - METS

Compartir registre