Carregant...
Fitxers
Tipus de document
ArticleVersió
Versió publicadaData de publicació
Tots els drets reservats
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/159377
Unraveling the hidden complexity of quasideterministic ratchets: random walks, graphs, and circle maps
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
Brownian ratchets are shown to feature a nontrivial vanishing-noise limit where the dynamics is reduced to a stochastic alternation between two deterministic circle maps (quasideterministic ratchets). Motivated by cooperative dynamics of molecular motors, here we solve exactly the problem of two interacting quasideterministic ratchets. We show that the dynamics can be described as a random walk on a graph that is specific to each set of parameters. We compute point by point the exact velocity-force V ( f ) function as a summation over all paths in the specific graph for each f , revealing a complex structure that features self-similarity and nontrivial continuity properties. From a general perspective, we unveil that the alternation of two simple piecewise linear circle maps unfolds a very rich variety of dynamical complexity, in particular the phenomenon of piecewise chaos, where chaos emerges from the combination of nonchaotic maps. We show convergence of the finite-noise case to our exact solution.
Matèries (anglès)
Citació
Citació
BLANCH MERCADER, Carles, GÓMEZ ORLANDI, Javier, CASADEMUNT I VIADER, Jaume. Unraveling the hidden complexity of quasideterministic ratchets: random walks, graphs, and circle maps. _Physical Review E_. 2020. Vol. 101, núm. 1, pàgs. 012203. [consulta: 14 de gener de 2026]. ISSN: 1539-3755. [Disponible a: https://hdl.handle.net/2445/159377]