MiOS, an integrated imaging and computational strategy to model gene folding with nucleosome resolution

dc.contributor.authorNeguembor, Maria Victoria
dc.contributor.authorArcon, Juan Pablo
dc.contributor.authorBuitrago Ospina, Diana Camila
dc.contributor.authorLema, Rafael
dc.contributor.authorWalther, Jürgen
dc.contributor.authorGarate, Ximena
dc.contributor.authorMartín de Dios, Laura
dc.contributor.authorRomero, Pablo
dc.contributor.authorAlHaj Abed, Juman
dc.contributor.authorGut, Marta
dc.contributor.authorBlanc, Julie
dc.contributor.authorLakadamyali, Melike
dc.contributor.authorWu, Chao-ting
dc.contributor.authorBrun Heath, Isabelle
dc.contributor.authorOrozco López, Modesto
dc.contributor.authorDans, Pablo D.
dc.contributor.authorPia Cosma, Maria
dc.date.accessioned2023-01-10T11:57:45Z
dc.date.available2023-04-11T05:10:26Z
dc.date.issued2022-10-11
dc.date.updated2023-01-09T12:39:42Z
dc.description.abstractThe linear sequence of DNA provides invaluable information about genes and their regulatory elements along chromosomes. However, to fully understand gene function and regulation, we need to dissect how genes physically fold in the three-dimensional nuclear space. Here we describe immuno-OligoSTORM, an imaging strategy that reveals the distribution of nucleosomes within specific genes in super-resolution, through the simultaneous visualization of DNA and histones. We combine immuno-OligoSTORM with restraint-based and coarse-grained modeling approaches to integrate super-resolution imaging data with Hi-C contact frequencies and deconvoluted micrococcal nuclease-sequencing information. The resulting method, called Modeling immuno-OligoSTORM, allows quantitative modeling of genes with nucleosome resolution and provides information about chromatin accessibility for regulatory factors, such as RNA polymerase II. With Modeling immuno-OligoSTORM, we explore intercellular variability, transcriptional-dependent gene conformation, and folding of housekeeping and pluripotency-related genes in human pluripotent and differentiated cells, thereby obtaining the highest degree of data integration achieved so far to our knowledge.ca
dc.format.extent27 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idimarina6568429
dc.identifier.issn1545-9985
dc.identifier.pmid36220894
dc.identifier.urihttps://hdl.handle.net/2445/192014
dc.language.isoengca
dc.publisherSpringer Nature
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1038/s41594-022-00839-y
dc.relation.ispartofNature Structural & Molecular Biology, 2022, vol. 29, num. 10, p. 1011–1023
dc.relation.urihttps://doi.org/10.1038/s41594-022-00839-y
dc.rights(c) Neguembor, Maria Victoria et al., 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Bioquímica i Biomedicina Molecular)
dc.subject.classificationGenòmica
dc.subject.classificationGenètica molecular
dc.subject.classificationGens
dc.subject.otherGenomics
dc.subject.otherMolecular genetics
dc.subject.otherGenes
dc.titleMiOS, an integrated imaging and computational strategy to model gene folding with nucleosome resolutionca
dc.typeinfo:eu-repo/semantics/articleca
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
MiOS_an_integrated_imaging.pdf
Mida:
17.78 MB
Format:
Adobe Portable Document Format