Bilinear forms on non-homogeneous Sobolev spaces
| dc.contributor.author | Cascante, Ma. Carme (Maria Carme) | |
| dc.contributor.author | Ortega Aramburu, Joaquín M. | |
| dc.date.accessioned | 2023-02-08T18:19:42Z | |
| dc.date.available | 2023-02-08T18:19:42Z | |
| dc.date.issued | 2020 | |
| dc.date.updated | 2023-02-08T18:19:42Z | |
| dc.description.abstract | In this paper we show that if $b\in L^2(\R^n)$, then the bilinear form defined on the product of the non-homogeneous Sobolev spaces $H_s^2(\R^n)\times H_s^2(\R^n)$, $0<s<1$ by $$ (f,g)\in H_s^2(\R^n)\times H_s^2(\R^n) \to \int_{\R^n} (Id-\Delta)^{s/2}(fg)({\bf x}) b({\bf x})d{\bf x}, $$ is continuous if and only if the positive measure $|b({\bf x})|^2d{\bf x} $ is a trace measure for $H_s^2(\R^n)$. | |
| dc.format.extent | 32 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.idgrec | 707664 | |
| dc.identifier.issn | 0933-7741 | |
| dc.identifier.uri | https://hdl.handle.net/2445/193292 | |
| dc.language.iso | eng | |
| dc.publisher | Walter de Gruyter | |
| dc.relation.isformatof | Reproducció del document publicat a: https://doi.org/10.1515/forum-2019-0311 | |
| dc.relation.ispartof | Forum Mathematicum, 2020, vol. 32, num. 4, p. 995-1026 | |
| dc.relation.uri | https://doi.org/10.1515/forum-2019-0311 | |
| dc.rights | (c) Walter de Gruyter, 2020 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.source | Articles publicats en revistes (Matemàtiques i Informàtica) | |
| dc.subject.classification | Anàlisi funcional | |
| dc.subject.classification | Espais de Sobolev | |
| dc.subject.classification | Equacions en derivades parcials | |
| dc.subject.classification | Equacions diferencials el·líptiques | |
| dc.subject.other | Functional analysis | |
| dc.subject.other | Sobolev spaces | |
| dc.subject.other | Partial differential equations | |
| dc.subject.other | Elliptic differential equations | |
| dc.title | Bilinear forms on non-homogeneous Sobolev spaces | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/publishedVersion |
Fitxers
Paquet original
1 - 1 de 1