Bilinear forms on non-homogeneous Sobolev spaces

dc.contributor.authorCascante, Ma. Carme (Maria Carme)
dc.contributor.authorOrtega Aramburu, Joaquín M.
dc.date.accessioned2023-02-08T18:19:42Z
dc.date.available2023-02-08T18:19:42Z
dc.date.issued2020
dc.date.updated2023-02-08T18:19:42Z
dc.description.abstractIn this paper we show that if $b\in L^2(\R^n)$, then the bilinear form defined on the product of the non-homogeneous Sobolev spaces $H_s^2(\R^n)\times H_s^2(\R^n)$, $0<s<1$ by $$ (f,g)\in H_s^2(\R^n)\times H_s^2(\R^n) \to \int_{\R^n} (Id-\Delta)^{s/2}(fg)({\bf x}) b({\bf x})d{\bf x}, $$ is continuous if and only if the positive measure $|b({\bf x})|^2d{\bf x} $ is a trace measure for $H_s^2(\R^n)$.
dc.format.extent32 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec707664
dc.identifier.issn0933-7741
dc.identifier.urihttps://hdl.handle.net/2445/193292
dc.language.isoeng
dc.publisherWalter de Gruyter
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1515/forum-2019-0311
dc.relation.ispartofForum Mathematicum, 2020, vol. 32, num. 4, p. 995-1026
dc.relation.urihttps://doi.org/10.1515/forum-2019-0311
dc.rights(c) Walter de Gruyter, 2020
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationAnàlisi funcional
dc.subject.classificationEspais de Sobolev
dc.subject.classificationEquacions en derivades parcials
dc.subject.classificationEquacions diferencials el·líptiques
dc.subject.otherFunctional analysis
dc.subject.otherSobolev spaces
dc.subject.otherPartial differential equations
dc.subject.otherElliptic differential equations
dc.titleBilinear forms on non-homogeneous Sobolev spaces
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
707664.pdf
Mida:
534.73 KB
Format:
Adobe Portable Document Format