Critical slowing down close to a global bifurcation of a curve of quasineutral equilibria

dc.contributor.authorFontich, Ernest, 1955-
dc.contributor.authorGuillamon Grabolosa, Antoni
dc.contributor.authorLázaro Ochoa, José Tomaś
dc.contributor.authorAlarcón Cor, Tomás
dc.contributor.authorVidiella Rocamora, Blai
dc.contributor.authorSardanyés Cayuela, Josep
dc.date.accessioned2022-02-24T11:02:58Z
dc.date.available2024-01-31T06:10:22Z
dc.date.issued2022-01
dc.date.updated2022-02-24T11:02:58Z
dc.description.abstractCritical slowing down arises close to bifurcations and involves long transients. Despite slowing down phenomena have been widely studied in local bifurcations i.e., bifurcations of equilibrium points, less is known about transient delay phenomena close to global bifurcations. In this paper, we identify a novel mechanism of slowing down arising in the vicinity of a global bifurcation i.e., zip bifurcation, identified in a mathematical model of the dynamics of an autocatalytic replicator with an obligate parasite. Three different dynamical scenarios are first described, depending on the replication rate of cooperators, $(L)$, and of parasites, $(K)$. If $K<L$ the system is $\underline{\text { bistable }}$ and the dynamics can be either the outcompetition of the parasite or the two-species extinction. When $K>L$ the system is monostable and both species become extinct. In the case $K=L$ coexistence of both species takes place in a Curve of Quasi-Neutral Equilibria (CQNE). The novel slowing down mechanism identified is due to an underlying ghost CQNE for the cases $K \lesssim L$ and $K \gtrsim L$. We show, both analytically and numerically, that the delays caused by the ghost CQNE follow scaling laws of the form $\tau \sim|K-L|^{-1}$ for both $K \lesssim L$ and $K \gtrsim L$. We propose the ghost CQNE as a novel transientgenerator mechanism in ecological systems.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec720161
dc.identifier.issn1007-5704
dc.identifier.urihttps://hdl.handle.net/2445/183448
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1016/j.cnsns.2021.106032
dc.relation.ispartofCommunications In Nonlinear Science And Numerical Simulation, 2022, vol. 104, p. 106032
dc.relation.urihttps://doi.org/10.1016/j.cnsns.2021.106032
dc.rightscc-by-nc-nd (c) Elsevier B.V., 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationTeoria de la bifurcació
dc.subject.classificationSistemes dinàmics diferenciables
dc.subject.classificationVarietats diferenciables
dc.subject.otherBifurcation theory
dc.subject.otherDifferentiable dynamical systems
dc.subject.otherDifferentiable manifolds
dc.titleCritical slowing down close to a global bifurcation of a curve of quasineutral equilibria
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
720161.pdf
Mida:
2.9 MB
Format:
Adobe Portable Document Format