El Dipòsit Digital ha actualitzat el programari. Contacteu amb dipositdigital@ub.edu per informar de qualsevol incidència.

 

Kernelizing: A way to increase accuracy in trilinear decomposition analysis of multiexponential signals

dc.contributor.authorGómez Sánchez, Adrián
dc.contributor.authorVitale, Raffaele
dc.contributor.authorDevos, Olivier
dc.contributor.authorJuan Capdevila, Anna de
dc.contributor.authorRuckebusch, Cyril
dc.date.accessioned2025-02-28T14:59:20Z
dc.date.available2025-02-28T14:59:20Z
dc.date.issued2023-09-08
dc.date.updated2025-02-28T14:59:21Z
dc.description.abstractThe unmixing of multiexponential decay signals into monoexponential components using soft modelling approaches is a challenging task due to the strong correlation and complete window overlap of the profiles. To solve this problem, slicing methodologies, such as PowerSlicing, tensorize the original data matrix into a three-way data array that can be decomposed based on trilinear models providing unique solutions. Satisfactory results have been reported for different types of data, e.g., nuclear magnetic resonance or time-resolved fluorescence spectra. However, when decay signals are described by only a few sampling (time) points, a significant degradation of the results can be observed in terms of accuracy and precision of the recovered profiles. In this work, we propose a methodology called Kernelizing that provides a more efficient way to tensorize data matrices of multiexponential decays. Kernelizing relies on the invariance of exponential decays, i.e., when convolving a monoexponential decaying function with any positive function of finite width (hereafter called “kernel”), the shape of the decay (determined by the characteristic decay constant) remains unchanged and only the preexponential factor varies. The way preexponential factors are affected across the sample and time modes is linear, and it only depends on the kernel used. Thus, using kernels of different shapes, a set of convolved curves can be obtained for every sample, and a three-way data array generated, for which the modes are sample, time and kernelizing effect. This three-way array can be afterwards analyzed by a trilinear decomposition method, such as PARAFAC-ALS, to resolve the underlying monoexponential profiles. To validate this new approach and assess its performance, we applied Kernelizing to simulated datasets, real time-resolved fluorescence spectra collected on mixtures of fluorophores and fluorescence-lifetime imaging microscopy data. When the measured multiexponential decays feature few sampling points (down to fifteen), more accurate trilinear model estimates are obtained than when using slicing methodologies.
dc.format.extent11 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec740995
dc.identifier.issn0003-2670
dc.identifier.urihttps://hdl.handle.net/2445/219364
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.aca.2023.341545
dc.relation.ispartofAnalytica Chimica Acta, 2023, vol. 1273, p. 1-11
dc.relation.urihttps://doi.org/10.1016/j.aca.2023.341545
dc.rightscc-by-nc-nd (c) Gómez Sánchez, Adrián, et al., 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceArticles publicats en revistes (Enginyeria Química i Química Analítica)
dc.subject.classificationQuimiometria
dc.subject.classificationEspectroscòpia de fluorescència
dc.subject.classificationRessonància magnètica nuclear
dc.subject.otherChemometrics
dc.subject.otherFluorescence spectroscopy
dc.subject.otherNuclear magnetic resonance
dc.titleKernelizing: A way to increase accuracy in trilinear decomposition analysis of multiexponential signals
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
837608.pdf
Mida:
5.33 MB
Format:
Adobe Portable Document Format