Transfer Learning For Many-Body Systems

dc.contributor.advisorRios Huguet, Arnau
dc.contributor.advisorRozalén Sarmiento, Javier
dc.contributor.authorAzzam, Amir
dc.date.accessioned2023-10-11T12:57:00Z
dc.date.available2023-10-11T12:57:00Z
dc.date.issued2023-07
dc.descriptionMàster Oficial de Ciència i Tecnologia Quàntiques / Quantum Science and Technology, Facultat de Física, Universitat de Barcelona. Curs: 2022-2023. Tutors: A. Rios, J. Rozalénca
dc.description.abstractWe study the ground-state properties of fully-polarized, trapped, one-dimensional fermions interacting through a Gaussian potential using a variational wavefunction represented by an antisymmetric artificial neural network. We optimize the network parameters by minimizing the energy of a four-particle system with machine learning techniques. We introduce several methods to enhance the efficiency, accuracy, and scalability of the artificial neural network approach. We use Early Stopping to terminate the training when the energy converges. We apply Transfer Learning to pre-train the network with different interactions or particle numbers to reduce the memory cost and improve the performance. We employ a re-weighting scheme to speed up the Metropolis- Hastings sampling for estimating the energy expectation value. We show that, in particular, this re-weighting scheme can speed up the training time by up to a factor of 10.ca
dc.format.extent29 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/202717
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Azan, 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceMàster Oficial - Ciència i Tecnologia Quàntiques / Quantum Science and Technology
dc.subject.classificationXarxa neuronal artificial
dc.subject.classificationEstats quàntics de xarxa neuronal
dc.subject.classificationAprenentatge per transferència
dc.subject.classificationTreballs de fi de màster
dc.subject.otherArtificial neural network
dc.subject.otherNeural network quantum states
dc.subject.otherTransfer learning
dc.subject.otherMaster's thesis
dc.titleTransfer Learning For Many-Body Systemseng
dc.typeinfo:eu-repo/semantics/masterThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
TFM_Amir_Azzam.pdf
Mida:
3.37 MB
Format:
Adobe Portable Document Format
Descripció: