El Dipòsit Digital ha actualitzat el programari. Contacteu amb dipositdigital@ub.edu per informar de qualsevol incidència.

 
Carregant...
Miniatura

Tipus de document

Treball de fi de màster

Data de publicació

Llicència de publicació

cc by-nc-nd (c) David Rosado Rodríguez, 2024
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/216987

On the basins of attraction of root-finding algorithms

Títol de la revista

ISSN de la revista

Títol del volum

Resum

Root-finding algorithms have historically been employed to solve numerically nonlinear equations of the form $f(x)=0$. Newton's method, one of the most well-known techniques, started being analyzed as a dynamical system in the complex plane during the late 19th century. This thesis explores the dynamics of damped Traub's methods $T_{p, \delta}$ when applied to polynomials. These methods encompass a range from Newton's method $(\delta=0)$ to Traub's method $(\delta=1)$. Our focus lies in investigating various topological properties of the basins of attraction, particularly their simple connectivity and unboundedness, which are crucial in identifying a universal set of initial conditions that ensure convergence to all roots of $p$. While the former topological properties are already proven for Newton's method $(\delta=0)$, they remain open for $\delta \neq 0$. We present results that contribute to addressing this gap, including a proof for cases where $\delta$ is close to 0 and for the polynomial family $p_d(z)=z\left(z^d-1\right)$.

Descripció

Treballs finals del Màster en Matemàtica Avançada, Facultat de Matemàtiques, Universitat de Barcelona: Curs: 2023-2024. Director: Xavier Jarque i Ribera

Citació

Citació

ROSADO RODRÍGUEZ, David. On the basins of attraction of root-finding algorithms. [consulta: 28 de novembre de 2025]. [Disponible a: https://hdl.handle.net/2445/216987]

Exportar metadades

JSON - METS

Compartir registre