Carregant...
Fitxers
Tipus de document
ArticleVersió
Versió acceptadaData de publicació
Tots els drets reservats
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/193831
The Canny-Emiris conjecture for the sparse resultant
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
We present a product formula for the initial parts of the sparse resultant associated with an arbitrary family of supports, generalizing a previous result by Sturmfels. This allows to compute the homogeneities and degrees of this sparse resultant, and its evaluation at systems of Laurent polynomials with smaller supports. We obtain an analogous product formula for some of the initial parts of the principal minors of the Sylvester-type square matrix associated with a mixed subdivision of a polytope. Applying these results, we prove that under suitable hypothesis, the sparse resultant can be computed as the quotient of the determinant of such a square matrix by one of its principal minors. This generalizes the classical Macaulay formula for the homogeneous resultant and confirms a conjecture of Canny and Emiris.
Matèries
Matèries (anglès)
Citació
Citació
D'ANDREA, Carlos, JERONIMO, Gabriela, SOMBRA, Martín. The Canny-Emiris conjecture for the sparse resultant. _Foundations of Computational Mathematics_. 2022. [consulta: 21 de gener de 2026]. ISSN: 1615-3375. [Disponible a: https://hdl.handle.net/2445/193831]