Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/193831

The Canny-Emiris conjecture for the sparse resultant

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

We present a product formula for the initial parts of the sparse resultant associated with an arbitrary family of supports, generalizing a previous result by Sturmfels. This allows to compute the homogeneities and degrees of this sparse resultant, and its evaluation at systems of Laurent polynomials with smaller supports. We obtain an analogous product formula for some of the initial parts of the principal minors of the Sylvester-type square matrix associated with a mixed subdivision of a polytope. Applying these results, we prove that under suitable hypothesis, the sparse resultant can be computed as the quotient of the determinant of such a square matrix by one of its principal minors. This generalizes the classical Macaulay formula for the homogeneous resultant and confirms a conjecture of Canny and Emiris.

Citació

Citació

D'ANDREA, Carlos, JERONIMO, Gabriela, SOMBRA, Martín. The Canny-Emiris conjecture for the sparse resultant. _Foundations of Computational Mathematics_. 2022. [consulta: 21 de gener de 2026]. ISSN: 1615-3375. [Disponible a: https://hdl.handle.net/2445/193831]

Exportar metadades

JSON - METS

Compartir registre