Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c) Shumilov et. al., 2019
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/171202

Simulating rewetting events in intermittent rivers and ephemeral streams: global analysis of leached nutrients and organic matter

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Climate change and human pressures are changing the global distribution and extent of intermittent rivers and ephemeral streams (IRES), which comprise half of the global river network area. IRES are characterized by periods of flow cessation, during which channel substrates accumulate and undergo physico‐chemical changes (preconditioning), and periods of flow resumption, when these substrates are rewetted and release pulses of dissolved nutrients and organic matter (OM). However, there are no estimates of the amounts and quality of leached substances, nor is there information on the underlying environmental constraints operating at the global scale. We experimentally simulated, under standard laboratory conditions, rewetting of leaves, riverbed sediments, and epilithic biofilms collected during the dry phase across 205 IRES from five major climate zones. We determined the amounts and qualitative characteristics of the leached nutrients and OM, and estimated their areal fluxes from riverbeds. In addition, we evaluated the variance in leachate characteristics in relation to selected environmental variables and substrate characteristics. We found that sediments, due to their large quantities within riverbeds, contribute most to the overall flux of dissolved substances during rewetting events (56‐98%), and that flux rates distinctly differ among climate zones. Dissolved organic carbon, phenolics, and nitrate contributed most to the areal fluxes. The largest amounts of leached substances were found in the continental climate zone, coinciding with the lowest potential bioavailability of the leached organic matter. The opposite pattern was found in the arid zone. Environmental variables expected to be modified under climate change (i.e. potential evapotranspiration, aridity, dry period duration, land use) were correlated with the amount of leached substances, with the strongest relationship found for sediments. These results show that the role of IRES should be accounted for in global biogeochemical cycles, especially because prevalence of IRES will increase due to increasing severity of drying events.

Citació

Citació

SHUMILOVA, Oleksandra, ZAK, Dominik, DATRY, Thibault, SCHILLER CALLE, Daniel von, CORTI, Roland, FOULQUIER, Arnaud, OBRADOR SALA, Biel, TOCKNER, Klement, ALTERMATT, Florian, ARCE, María isabel, ARNON, Shai, BANAS, Damien, BANEGAS MEDINA, Andiranel, BELLER, Erin, BLANCHETTE, Melanie l., BLANCO-LIBREROS, Juan f., BLESSING, Joanna, GONÇALVES BOËCHAT, Iola, BOERSMA, Kate, BOGAN, Michael t., BONADA I CAPARRÓS, Núria, BOND, Nick r., BRINTRUP, Kate, BRUDER, Andreas, BURROWS, Ryan, CANCELLARIO, Tommaso, CARLSON, Stephanie m., CAUVY-FRAUNIÉ, Sophie, CID PUEY, Núria, DANGER, Michael, DE FREITAS TERRA, Bianca, DE GIROLAMO, Anna maria, DEL CAMPO, Ruben, DYER, Fiona, ELOSEGI, Arturo, FAYE, Emile, FEBRIA, Catherine, FIGUEROA, Ricardo, FOUR, Brian, GESSNER, Mark o., GNOHOSSOU, Pierre, GÓMEZ CEREZO, Rosa, HWAN, Jason l., KUBHEKA, Skhumbuzo, LANGHANS, Simone daniela, LEIGH, Catherine, LITTLE, Chelsea j., LORENZ, Stefan, MARSHAL, Jonathan, MCINTOSH, Angus, MENDOZA-LERA, Clara, IRMGARD MEYER, Elisabeth, MILIŠA, Marko, MLAMBO, Musa c., MOLEÓN, Marcos, NEGUS, Peter, NIYOG, Dev, PAPATHEODOULOU, Athina, PARDO, Isabel, Petr Paril, PEŠIĆ, Vladimir, RODRIGUEZ‐LOZANO, Pablo, ROLLS, Robert j., SANCHEZ‐MONTOYA, Maria m., SAVIĆ, Ana, STEWARD, Alisha, STUBBINGTON, Rachel, TALEB, Amina, VANDER VORSTE, Ross, WALTHAM, Nathan, ZOPPINI, Annamaria, ZARFL, Christiane. Simulating rewetting events in intermittent rivers and ephemeral streams: global analysis of leached nutrients and organic matter. _Global Change Biology_. 2019. Vol. 25, núm. 5, pàgs. 1591-1611. [consulta: 23 de gener de 2026]. ISSN: 1354-1013. [Disponible a: https://hdl.handle.net/2445/171202]

Exportar metadades

JSON - METS

Compartir registre