Carregant...
Fitxers
Tipus de document
ArticleVersió
Versió publicadaData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/190674
Using machine learning to link the influence of transferred Agrobacterium rhizogenes genes to the hormone profile and morphological traits in Centella asiatica hairy roots
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
Hairy roots are made after the integration of a small set of genes from Agrobacterium rhizogenes in the plant genome. Little is known about how this small set is linked to their hormone profile, which determines development, morphology, and levels of secondary metabolite production. We used C. asiatica hairy root line cultures to determine the putative links between the rol and aux gene expressions with morphological traits, a hormone profile, and centelloside production. The results obtained after 14 and 28 days of culture were processed via multivariate analysis and machine-learning processes such as random forest, supported vector machines, linear discriminant analysis, and neural networks. This allowed us to obtain models capable of discriminating highly productive root lines from their levels of genetic expression (rol and aux genes) or from their hormone profile. In total, 12 hormones were evaluated, resulting in 10 being satisfactorily detected. Within this set of hormones, abscisic acid (ABA) and cytokinin isopentenyl adenosine (IPA) were found to be critical in defining the morphological traits and centelloside content. The results showed that IPA brings more benefits to the biotechnological platform. Additionally, we determined the degree of influence of each of the evaluated genes on the individual hormone profile, finding that aux1 has a significant influence on the IPA profile, while the rol genes are closely linked to the ABA profile. Finally, we effectively verified the gene influence on these two specific hormones through feeding experiments that aimed to reverse the effect on root morphology and centelloside content.
Matèries (anglès)
Citació
Citació
ALCALDE ALVITES, Miguel angel, MÜLLER, Maren, MUNNÉ BOSCH, Sergi, LANDÍN, Mariana, GALLEGO, Pedro pablo, BONFILL BALDRICH, Ma. mercedes, PALAZÓN BARANDELA, Javier, HIDALGO MARTÍNEZ, Diego alberto. Using machine learning to link the influence of transferred Agrobacterium rhizogenes genes to the hormone profile and morphological traits in Centella asiatica hairy roots. _Frontiers in Plant Science_. 2022. [consulta: 21 de gener de 2026]. ISSN: 1664-462X. [Disponible a: https://hdl.handle.net/2445/190674]