Bounds on multisecant lines

dc.contributor.authorNollet, Scott, 1962-cat
dc.date.accessioned2011-03-08T09:49:00Z-
dc.date.available2011-03-08T09:49:00Z-
dc.date.issued1998-
dc.description.abstractThe purpose of this paper is two fold. First, we give an upper bound on the order of a multisecant line to an integral arithmetically Cohen-Macaulay subscheme in Pn of codimension two in terms of the Hilbert function. Secondly, we give an explicit description of the singular locus of the blow up of an arbitrary local ring at a complete intersection ideal. This description is used to refine standard linking theorem. These results are tied together by the construction of sharp examples for the bound, which uses the linking theorems.eng
dc.format.extent17 p.-
dc.format.mimetypeapplication/pdf-
dc.identifier.issn0010-0757-
dc.identifier.urihttps://hdl.handle.net/2445/16909-
dc.language.isoengeng
dc.publisherUniversitat de Barcelonacat
dc.relation.isformatofReproducció del document publicat a: http://www.collectanea.ub.edu/index.php/Collectanea/article/view/3952/4795cat
dc.relation.ispartofCollectanea Mathematica, 1998, vol. 49, num. 2-3, p. 447-463cat
dc.rights(c) Universitat de Barcelona, 1998-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationGeometria algebraicacat
dc.subject.otherAlgebraic geometryeng
dc.titleBounds on multisecant lineseng
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
noidgcm02.pdf
Mida:
146.33 KB
Format:
Adobe Portable Document Format