Data science aplicat a resultats acadèmics per a la millora del pla d’acció tutorial a la Universitat de Barcelona

dc.contributor.advisorPuertas i Prats, Eloi
dc.contributor.authorPortell Penadés, Laura
dc.date.accessioned2017-01-17T09:31:14Z
dc.date.available2017-01-17T09:31:14Z
dc.date.issued2016-06-30
dc.descriptionTreballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2016, Director: Eloi Puertas i Pratsca
dc.description.abstractAcademic tutors at universities find themselves without enough tools or material to help their students due to the lack of knowledge of each student’s academic profile. For this reason, we have performed a comprehensive study of student data in order to obtain supplementary material for the tutor. Clusterization algorithms have been used to separate the students into groups to identify general characteristics of the students belonging to a particular cluster. Dropout of each cluster and relationships between groups have been studied as well. A k-NN classifier has been used to create a prediction model which is able to predict in which cluster a student will belong the next academic year. Finally, visualization technics have been used to present the results of the analysis.ca
dc.format.extent100 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/105682
dc.language.isocatca
dc.rightsmemòria: cc-by-nc-sa (c) Laura Portell Penadés, 2016
dc.rightscodi: GPL (c) Laura Portell Penadés, 2016
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-sa/3.0/es
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html
dc.sourceTreballs Finals de Grau (TFG) - Enginyeria Informàtica
dc.subject.classificationDades massivescat
dc.subject.classificationAlgorismes computacionalscat
dc.subject.classificationProgramaricat
dc.subject.classificationTreballs de fi de graucat
dc.subject.classificationVisualització (Informàtica)ca
dc.subject.classificationMineria de dadesca
dc.subject.classificationRendiment acadèmicca
dc.subject.classificationTutoria (Ensenyament)ca
dc.subject.otherBig dataeng
dc.subject.otherComputer algorithmseng
dc.subject.otherComputer softwareeng
dc.subject.otherBachelor's theseseng
dc.subject.otherInformation display systemseng
dc.subject.otherData miningeng
dc.subject.otherAcademic achievementeng
dc.subject.otherTutoring (Teaching)en
dc.titleData science aplicat a resultats acadèmics per a la millora del pla d’acció tutorial a la Universitat de Barcelonaca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 2 de 2
Carregant...
Miniatura
Nom:
memoria.pdf
Mida:
10.61 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria
Carregant...
Miniatura
Nom:
codi_font.zip
Mida:
1.2 MB
Format:
ZIP file
Descripció:
Codi font